I have been using the new build spde2 and despite trying the above approach, initializing theta1, the problem failed to resolve. here is extract (long format),
name=[INLA.Model]
strategy=[default]
store results in directory=[C:Temp/Rtmpys8p9F/file2d0732a0/results.files]
output:
cpo=[1]
dic=[1]
kld=[1]
mlik=[1]
q=[0]
graph=[0]
hyperparameters=[1]
summary=[1]
return.marginals=[1]
nquantiles=[4] [ 0.025 0.5 0.95 0.975 ]
ncdf=[0] [ ]
parse section=[2] name=[Predictor] type=[PREDICTOR]
inla_parse_predictor ...
section=[Predictor]
dir=[predictor]
PRIOR->name=[loggamma]
PRIOR->from_theta=[function (x) <<NEWLINE>>exp(x)]
PRIOR->to_theta = [function (x) <<NEWLINE>>log(x)]
PRIOR->PARAMETERS=[1, 1e-005]
initialise log_precision[11]
fixed=[1]
user.scale=[1]
n=[3621]
m=[21267]
ndata=[21267]
compute=[1]
Aext=[C:/Temp/Rtmpys8p9F/file2d0732a0/data.files/file481d7b54]
AextPrecision=[3.269e+006]
output:
summary=[1]
return.marginals=[1]
nquantiles=[4] [ 0.025 0.5 0.95 0.975 ]
ncdf=[0] [ ]
parse section=[1] name=[INLA.Data1] type=[DATA]
inla_parse_data [section 1]...
tag=[INLA.Data1]
family=[GAUSSIAN]
link=[IDENTITY]
likelihood=[GAUSSIAN]
file->name=[C:Temp/Rtmpys8p9F/file2d0732a0/data.files/file5dc458b]
file->name=[C:Temp/Rtmpys8p9F/file2d0732a0/data.files/file400d44ff]
read n=[10284] entries from file=[C:d0732a0/data.files/file5dc458b]
0/3428 (idx,a,y,d) = (1, 1, 2.20727, 1)
1/3428 (idx,a,y,d) = (20, 1, -1.#INF, 1)
2/3428 (idx,a,y,d) = (34, 1, -1.#INF, 1)
3/3428 (idx,a,y,d) = (39, 1, 3.44202, 1)
4/3428 (idx,a,y,d) = (80, 1, -1.#INF, 1)
use variant [0]
bit 0 is off
bit 1 is off
bit 2 is off
bit 3 is off
initialise log_precision[4]
fixed=[0]
PRIOR->name=[loggamma]
PRIOR->from_theta=[function (x) <<NEWLINE>>exp(x)]
PRIOR->to_theta = [function (x) <<NEWLINE>>log(x)]
PRIOR->PARAMETERS=[1, 5e-005]
parse section=[3] name=[field] type=[FFIELD]
inla_parse_ffield...
section=[field]
dir=[random.effect00000001]
model=[spde2]
PRIOR0->name=[mvnorm]
PRIOR0->from_theta=[function (x) <<NEWLINE>>x]
PRIOR0->to_theta = [function (x) <<NEWLINE>>x]
PRIOR0->PARAMETERS0[0]=[-3.56078]
PRIOR0->PARAMETERS0[1]=[-0.189643]
PRIOR0->PARAMETERS0[2]=[0.1]
PRIOR0->PARAMETERS0[3]=[0]
PRIOR0->PARAMETERS0[4]=[0]
PRIOR0->PARAMETERS0[5]=[0.1]
constr=[0]
diagonal=[0]
si=[0] (if possible)
id.names=<not present>
compute=[1]
nrep=[1]
ngroup=[7]
read covariates from file = tmpys8p9F/file2d0732a0/data.files/file3d4e7858] 4/3621 (idx,y) = (4, 0.001)
spde2.prefix = [C:/Users/Temp/Rtmpys8p9F/file2d0732a0/data.files/fileb26704b/file373d6050.]
spde2.transform = [identity]
ntheta = [2]
initialise theta[0]=[-3.56078]
fixed[0]=[0]
initialise theta[1]=[-0.189643]
fixed[1]=[0]
computed/guessed rank-deficiency = [0]
output:
summary=[1]
return.marginals=[1]
nquantiles=[4] [ 0.025 0.5 0.95 0.975 ]
ncdf=[0] [ ]
group.type = ar1
initialise group_rho_intern[2]
group.fixed=[0]
GROUP.PRIOR->name=[normal]
GROUP.PRIOR->from_theta=[function (x) <<NEWLINE>>log((1 + x)/(1 - x))]
GROUP.PRIOR->to_theta = [function (x) <<NEWLINE>>2 * exp(x)/(1 + exp(x)) - 1]
GROUP.PRIOR->GROUP.PARAMETERS=[0, 0.15]
Index table: number of entries[2], total length[40785]
tag start-index length
Predictor 0 24888
field 24888 15897
parse section=[4] name=[INLA.Parameters] type=[INLA]
inla_parse_INLA...
section[INLA.Parameters]
lincomb.derived.only = [Yes]
lincomb.derived.correlation.matrix = [No]
global_node.factor = 2.000
global_node.degree =
2147483647 reordering = -1
diagonal (expert emergency) = 0.001
Contents of ai_param 00000000057BC910
Optimiser: DEFAULT METHOD
Option for domin-BFGS: epsx = 0.01
Option for domin-BFGS: epsf = 1e-005 (rounding error)
Option for domin-BFGS: epsg = 0.01
Option for GSL-BFGS2: tol = 0.1
Option for GSL-BFGS2: step_size = 1
Option for GSL-BFGS2: epsx = 0.01
Option for GSL-BFGS2: epsf = 0.001
Option for GSL-BFGS2: epsg = 0.01
Restart: 0
Mode known: No
Gaussian approximation:
abserr_func = 0.0005
abserr_step = 0.0005
optpar_fp = 0
optpar_nr_step_factor = -0.1
Gaussian data: Yes
Strategy: Use the Gaussian approximation
Fast mode: On
Use linear approximation to log(|Q +c|)? Yes
Method: Compute the derivative exact
SI directory: <NONE>
Parameters for improved approximations
Number of points evaluate: 9
Step length to compute derivatives numerically: 0.000122
Cutoff value to construct local neigborhood: 0.000100
Log calculations: On
Log calculated marginal for the hyperparameters: On
Integration strategy: Use points from Central Composite Design (CCD)
f0 (CCD only): 1.100000
dz (GRID only): 1.000000
Adjust weights (GRID only): On
Difference in log-density limit (GRID only): 2.500000
Skip configurations with (presumed) small density (GRID only): On
Gradient is computed using Forward difference with step-length 0.010000
Hessian is computed using Central difference with step-length 0.100000
Hessian matrix is forced to be a diagonal matrix? [No]
Compute effective number of parameters? [Yes]
Perform a Monte Carlo error-test? [No]
Interpolator [Auto]
CPO required diff in log-density [3]
Stupid search mode:
Status [On]
Max iter [1000]
Factor [1.01]
Numerical integration of hyperparameters:
Maximum number of function evaluations [100000]
Relative error ....................... [1e-005]
Absolute error ....................... [1e-006]
To stabalise the numerical optimisation:
Minimum value of the -Hesssian [0]
CPO manual calculation[No]
inla_build: check for unused entries in[C:/Users/Temp/Rtmpys8p9F/file2d0732a0/Model.ini]
inla_INLA...
Strategy = [DEFAULT]
Size is [40785] and strategy [LARGE] is chosen
Size of full graph=[40785]
Found optimal reordering=[amdc] nnz(L)=[5047128] and use_global_nodes(user)=[no]
List of hyperparameters:
theta[0] = [Log precision for the Gaussian observations]
theta[1] = [Theta1 for field]
theta[2] = [Theta2 for field]
file: smtp-taucs.c hgid: 6bab309d6ee2 date: Fri Jun 08 15:13:40 2012 +0200
Function: GMRFLib_build_sparse_matrix_TAUCS(), Line: 669, Thread: 0