I am trying to run a one-way permanova where I have only 2 levels in the factor “time”, and each level contains only 3 replicates. So because I have such few observations (6 in total) and levels (2) there are not enough possible permutations to get a reasonable test (i.e. (2*3)!/ [2!(3!)^2]. That is why for example if I run the analysis with only 99 permutations it completes the task. However, if I set the number of permutations to anything larger it returns the message “'nperm' > set of all permutations; Resetting 'nperm'.” as the number of possible permutations exceeds the number set by the argument “permutations=”. In PERMANOVA + for PRIMER there is a way of dealing with this issue – by using Monte Carlo simulations to generate the p value with a reasonable number of permutations. Hopefully this clarifies my situation and aim?
I was therefore hoping there was a way of coding for the Monte-Carlo permutation procedure into adonis?
Thanks for your help!
Brian
Brian S. Cade, PhD
U. S. Geological Survey
Fort Collins Science Center
2150 Centre Ave., Bldg. C
Fort Collins, CO 80526-8818
email: ca...@usgs.gov <brian...@usgs.gov>
tel: 970 226-9326
Please excuse my brevity; this message was sent from my telephone.