Hi Dear
I have seen your request Hamiltonian which describe the interaction of single four level atom with electromagnetic field.
Find the code with Qutip
def hamiltonian_t(t, args):
H0 = args[0]
H12 = args[1]
H21 = args[2]
H13 = args[3]
H31 = args[4]
H24 = args[5]
H42 = args[6]
H34 = args[7]
H43 = args[8]
H=H0+(H12*exp(1j*delta1*t)+H21*exp(-1j*delta1*t))+\
(exp(1j*delta2*t)*H13+H31*exp(-1j*delta2*t))+\
(H24*exp(1j*delta3*t)+H42*exp(-1j*delta3*t))+\
(H34*exp(1j*delta4*t)+H43*exp(-1j*delta4*t))
return H
N=30
Karr=0.0
delta1=7.0
delta2=7.0
delta3=15.0
delta4=15.0
# cavity operators
a = tensor(destroy(N), qeye(4))
A = a
nc = a.dag() * a
xc = a + a.dag()
#atomic operators atomic raising
sigma11=tensor(qeye(N),basis(4,0)*basis(4,0).dag())
sigma22=tensor(qeye(N),basis(4,1)*basis(4,1).dag())
sigma33=tensor(qeye(N),basis(4,2)*basis(4,2).dag())
sigma44=tensor(qeye(N),basis(4,3)*basis(4,3).dag())
#atomic operators atomic loweing
sigma12=tensor(qeye(N),basis(4,0)*basis(4,1).dag())
sigma13=tensor(qeye(N),basis(4,0)*basis(4,2).dag())
sigma24=tensor(qeye(N),basis(4,1)*basis(4,3).dag())
sigma34=tensor(qeye(N),basis(4,2)*basis(4,3).dag())
I = tensor(qeye(N), qeye(4))
# effective Hamiltonian
H0= Karr * A.dag()**2 * A**2
H12= A * sigma12
H21= A.dag() * sigma12.dag()
H13= A * sigma13
H31= A.dag() * sigma13.dag()
H24= A * sigma24
H42= A.dag() * sigma24.dag()
H34= A * sigma34
H43= A.dag() * sigma34.dag()
args = (H0, H12, H21, H13, H31, H24, H42, H34, H43)
#
c_ops = []
psi0 = tensor(SS(N, sqrt(10),arcsinh(1),0), (basis(4,0)).unit())
tlist = linspace(0, 100, 1500)
res = mesolve(hamiltonian_t, psi0, tlist, c_ops, [], args)