cls = Classifier(classname="weka.classifiers.trees.J48", options = ["-C", "0.3", "-M", "2"])
cls.build_classifier(train)
evl = Evaluation(train)
evl.crossvalidate_model(cls, train, 10, Random(1))
print evl.summary()
evltrain = Evaluation(train)
evltrain.crossvalidate_model(cls, train, 10, Random(1))
evltrain.test_model(cls, train)
print evltrain.summary()
evl2 = Evaluation(test)
evl2.test_model(cls, test)
print evl2.summary()
Correctly Classified Instances 1972 57.5263 %
Incorrectly Classified Instances 1456 42.4737 %
Kappa statistic 0.3674
Mean absolute error 0.0816
Root mean squared error 0.2592
Relative absolute error 66.397 %
Root relative squared error 104.6286 %
Total Number of Instances 3428
Correctly Classified Instances 5075 74.0228 %
Incorrectly Classified Instances 1781 25.9772 %
Kappa statistic 0.6124
Mean absolute error 0.054
Root mean squared error 0.2006
Relative absolute error 43.9602 %
Root relative squared error 80.9387 %
Total Number of Instances 6856
Correctly Classified Instances 830 56.4626 %
Incorrectly Classified Instances 640 43.5374 %
Kappa statistic 0.3529
Mean absolute error 0.0829
Root mean squared error 0.2631
Relative absolute error 67.3634 %
Root relative squared error 106.1937 %
Total Number of Instances 1470
cls.build_classifier(train)
evltrain = Evaluation(train)
evltrain.crossvalidate_model(cls, train, 10, Random(1))
evltrain.test_model(cls, train)