ecdf and ecdf_sdss are instances of the ECDF class that represent the ecdf "function"
you need to evaluate it at some points, e.g.
>>> import statsmodels.api as sm
>>> x = np.random.randn(10)
>>> xnew = np.linspace(-3, 3, 21)
>>> ecdfx = sm.distributions.ECDF(x)
>>> ecdfx
<statsmodels.distributions.empirical_distribution.ECDF object at 0x05530690>
>>> ecdfx(x)
array([ 0.7, 0.2, 0.5, 0.1, 0.6, 1. , 0.3, 0.9, 0.4, 0.8])
>>> ecdfx(xnew)
array([ 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.2, 0.3, 0.5,
0.6, 0.6, 0.7, 0.7, 0.7, 0.9, 0.9, 1. , 1. , 1. ])
large sample
>>> x = np.random.randn(1000)
>>> ecdfx = sm.distributions.ECDF(x)
>>> ecdfx(xnew)
array([ 0.001, 0.005, 0.01 , 0.019, 0.032, 0.059, 0.098, 0.16 ,
0.26 , 0.354, 0.48 , 0.601, 0.729, 0.816, 0.897, 0.939,
0.964, 0.984, 0.992, 0.997, 0.999])
>>> from scipy import stats
>>> stats.norm.cdf(xnew)
array([ 0.0013499 , 0.00346697, 0.00819754, 0.01786442, 0.03593032,
0.0668072 , 0.11506967, 0.18406013, 0.27425312, 0.38208858,
0.5 , 0.61791142, 0.72574688, 0.81593987, 0.88493033,
0.9331928 , 0.96406968, 0.98213558, 0.99180246, 0.99653303,
0.9986501 ])
If you just want to get the two sample ks test, then the direct calculation of the max as in stats.ks_2samp might be better.
I never tried whether the ECDF would get the correct max difference in a simple way.
Josef