How to read dicom images with pydicom

1366 views
Skip to first unread message

xtsl

unread,
Aug 3, 2021, 4:18:10 PM8/3/21
to pydicom
Hi All,

My MR image is a 3D image. It has 40 slices. How to read it with dcmread()?

My code is as following:


import os
 
import pydicom 

 
rootdir = r'Y:\pharmascan\huang\186RNL\01_019\baseline'
for file in os.listdir(rootdir):
    d = os.path.join(rootdir, file)    
    if os.path.isdir(d):
         
        print(d+'\*.dcm')
         
        ds = dcmread(d+'\*.dcm',force=True)
        
        break  

The error message are as following when I ran my code.

Y:\pharmascan\huang\186RNL\01_019\baseline\Series1\*.dcm
--------------------------------------------------------------------------- NameError Traceback (most recent call last) <ipython-input-3-b7f9a9460b92> in <module> 11 print(d+'\*.dcm') 12 ---> 13 ds = dcmread(d+'\*.dcm',force=True) 14 15 break NameError: name 'dcmread' is not defined


Thanks,

Qiang

Darcy Mason

unread,
Aug 4, 2021, 1:25:16 AM8/4/21
to pydicom
You would have to either use:
from pydicom import dcmread

Or, with the import statement you have now, use:
ds = pydicom.dcmread(filename)

But it also looks like you are trying to read a directory with *.dcm; dcmread doesn't do pattern matching, you have to specify a specific filename.  If the slices come in separate files (which is common), you will have to read all 40.

If you add another import:
from pathlib import Path

Then your dcmread line should be changed to:
datasets = [dcmread(filename) for filename in Path(d).glob("*.dcm")]

to get a list of all the datasets in that folder.  I've used pathlib here because that's what I'm used to, but you could use, e.g. glob.glob.

You could also look into the FileSet concept if you have a DICOMDIR file with your data.

xtsl

unread,
Aug 5, 2021, 4:30:03 PM8/5/21
to pydicom
Hi Darcy,

import os
import xlsxwriter 
import pydicom 
import glob
import pandas as pd
from pydicom import dcmread
import numpy
from os.path import dirname, join
from pprint import pprint
from pathlib import Path

#os.chdir(r'Y:\pharmascan\huang\186RNL\01_019\baseline')

rootdir = r'Y:\pharmascan\huang\186RNL\01_019\test'

#patients = defaultdict(list)

for file in os.listdir(rootdir):
    d = os.path.join(rootdir, file)
    if os.path.isdir(d):
        print(os.getcwd()) #list present directory
        print(d)
        os.chdir(d)        #change prenent directory
        #print(d)
        #dcm_path = d+'\*.dcm'
        ds = [dcmread(filename) for filename in Path(d).glob("*.dcm")]
        print(ds.pixel_array.shape)


The results are as following after I change as you said.

Y:\pharmascan\huang\186RNL\01_019\test\Series1 
Y:\pharmascan\huang\186RNL\01_019\test\Series1

--------------------------------------------------------------------------- 
AttributeError                                       Traceback (most recent call last) 
<ipython-input-18-27eceeb128e8> in <module> 
            25        #dcm_path = d+'\*.dcm' 
            26        ds = [dcmread(filename) for filename in Path(d).glob("*.dcm") 
    ---> 27        print(ds.pixel_array.shape) 
            28 
AttributeError: 'list' object has no attribute 'pixel_array'


Thanks,

Qiang

xtsl

unread,
Aug 5, 2021, 4:35:07 PM8/5/21
to pydicom
Hi Darcy,

How could I test the size of the 3D matrix and how to extract this matrix from ds?

Thanks,

Qiang

Darcy Mason

unread,
Aug 5, 2021, 9:15:52 PM8/5/21
to pydicom
The AttributeError is because you have a list of datasets, not a single one.  You have to select a particular index to get the pixel_array for that slice, e.g.:
print(ds[0].pixel_array.shape).

For the 3d data, there are codes out there for getting a 3d matrix from individual slices, for example see the pydicom_series file.  If you search you should find a number of others.

xtsl

unread,
Aug 6, 2021, 11:16:12 AM8/6/21
to pydicom
Hi Darcy,
I tried to search how to read 3D data in group email. I didn't find related message. I tried to find how to use you recommended  pydicom_series file. I didn't find even a example on how to use it. The data pattern like ours should be very common.  Is there document  on this topic for your pydicom?

Thank you,

Qiang



Darcy Mason

unread,
Aug 6, 2021, 11:43:28 AM8/6/21
to pydicom
Pydicom was really built to read individual files well. Building up a 3d image from individual slice files can be a little tricky (making sure all slices are there, slice spacing is the same, all slices have consistent properties and are ordered correctly etc.), so is not currently built-in.

For the pydicom_series.py example. there are doc strings in the `read_files` method and in `DicomSeries` class with some explanation of how to use.

There is also a simple example here of gathering slices into a 3d volume.

And there are repositories that have pydicom as a dependency that can do this, I believe highdicom, for example.

As mentioned, it is not necessarily trivial to load a volume from slices, so any of these will require some reading to understand how to use in your situation.

xtsl

unread,
Aug 6, 2021, 2:14:11 PM8/6/21
to pydicom
Hi Darcy,

It seems like that the   pydicom_series file worked.

  
# pydicom_series.py
"""
By calling the function read_files with a directory name or list
of files as an argument, a list of DicomSeries instances can be
obtained. A DicomSeries object has some attributes that give
information about the series (such as shape, spacing, suid) and
has an info attribute, which is a pydicom.DataSet instance containing
information about the first dicom file in the series. The data can
be obtained using the get_pixel_array() method, which produces a
3D numpy array if there a multiple files in the series.
This module can deal with gated data, in which case a DicomSeries
instance is created for each 3D volume.
"""
#
# Copyright (c) 2010 Almar Klein
# This file is released under the pydicom license.
#    See the file LICENSE included with the pydicom distribution, also
#

# I (Almar) performed some test to loading a series of data
# in two different ways: loading all data, and deferring loading
# the data. Both ways seem equally fast on my system. I have to
# note that results can differ quite a lot depending on the system,
# but still I think this suggests that deferred reading is in
# general not slower. I think deferred loading of the pixel data
# can be advantageous because maybe not all data of all series
# is needed. Also it simply saves memory, because the data is
# removed from the Dataset instances.
# In the few result below, cold means reading for the first time,
# warm means reading 2nd/3d/etc time.
# - Full loading of data, cold: 9 sec
# - Full loading of data, warm: 3 sec
# - Deferred loading of data, cold: 9 sec
# - Deferred loading of data, warm: 3 sec

import gc
import os
import time

import pydicom
from pydicom.sequence import Sequence
 
import xlsxwriter 
 
import glob
import pandas as pd
from pydicom import dcmread
import numpy
from os.path import dirname, join
from pprint import pprint
from pathlib import Path

# Try importing numpy
try:
    import numpy as np
    have_numpy = True
except ImportError:
    np = None  # NOQA
    have_numpy = False


# Helper functions and classes
class ProgressBar(object):
    """ To print progress to the screen.
    """

    def __init__(self, char='-', length=20):
        self.char = char
        self.length = length
        self.progress = 0.0
        self.nbits = 0
        self.what = ''

    def Start(self, what=''):
        """ Start(what='')
        Start the progress bar, displaying the given text first.
        Make sure not to print anything untill after calling
        Finish(). Messages can be printed while displaying
        progess by using printMessage().
        """
        self.what = what
        self.progress = 0.0
        self.nbits = 0
        sys.stdout.write(what + " [")

    def Stop(self, message=""):
        """ Stop the progress bar where it is now.
        Optionally print a message behind it."""
        delta = int(self.length - self.nbits)
        sys.stdout.write(" " * delta + "] " + message + "\n")

    def Finish(self, message=""):
        """ Finish the progress bar, setting it to 100% if it
        was not already. Optionally print a message behind the bar.
        """
        delta = int(self.length - self.nbits)
        sys.stdout.write(self.char * delta + "] " + message + "\n")

    def Update(self, newProgress):
        """ Update progress. Progress is given as a number
        between 0 and 1.
        """
        self.progress = newProgress
        required = self.length * (newProgress)
        delta = int(required - self.nbits)
        if delta > 0:
            sys.stdout.write(self.char * delta)
            self.nbits += delta

    def PrintMessage(self, message):
        """ Print a message (for example a warning).
        The message is printed behind the progress bar,
        and a new bar is started.
        """
        self.Stop(message)
        self.Start(self.what)


def _dummyProgressCallback(progress):
    """ A callback to indicate progress that does nothing. """
    pass


_progressBar = ProgressBar()


def _progressCallback(progress):
    """ The default callback for displaying progress. """
    if isinstance(progress, str):
        _progressBar.Start(progress)
        _progressBar._t0 = time.time()
    elif progress is None:
        dt = time.time() - _progressBar._t0
        _progressBar.Finish(f'{dt:2.2f} seconds')
    else:
        _progressBar.Update(progress)


def _listFiles(files, path):
    """List all files in the directory, recursively. """

    for item in os.listdir(path):
        item = os.path.join(path, item)
        if os.path.isdir(item):
            _listFiles(files, item)
        else:
            files.append(item)


def _splitSerieIfRequired(serie, series):
    """ _splitSerieIfRequired(serie, series)
    Split the serie in multiple series if this is required.
    The choice is based on examing the image position relative to
    the previous image. If it differs too much, it is assumed
    that there is a new dataset. This can happen for example in
    unspitted gated CT data.
    """

    # Sort the original list and get local name
    serie._sort()
    L = serie._datasets

    # Init previous slice
    ds1 = L[0]

    # Check whether we can do this
    if "ImagePositionPatient" not in ds1:
        return

    # Initialize a list of new lists
    L2 = [[ds1]]

    # Init slice distance estimate
    distance = 0

    for index in range(1, len(L)):

        # Get current slice
        ds2 = L[index]

        # Get positions
        pos1 = float(ds1.ImagePositionPatient[2])
        pos2 = float(ds2.ImagePositionPatient[2])

        # Get distances
        newDist = abs(pos1 - pos2)
        # deltaDist = abs(firstPos-pos2)

        # If the distance deviates more than 2x from what we've seen,
        # we can agree it's a new dataset.
        if distance and newDist > 2.1 * distance:
            L2.append([])
            distance = 0
        else:
            # Test missing file
            if distance and newDist > 1.5 * distance:
                print(f'Warning: missing file after "{ds1.filename}"')
            distance = newDist

        # Add to last list
        L2[-1].append(ds2)

        # Store previous
        ds1 = ds2

    # Split if we should
    if len(L2) > 1:

        # At what position are we now?
        i = series.index(serie)

        # Create new series
        series2insert = []
        for L in L2:
            newSerie = DicomSeries(serie.suid, serie._showProgress)
            newSerie._datasets = Sequence(L)
            series2insert.append(newSerie)

        # Insert series and remove self
        for newSerie in reversed(series2insert):
            series.insert(i, newSerie)
        series.remove(serie)


def _getPixelDataFromDataset(ds):
    """ Get the pixel data from the given dataset. If the data
    was deferred, make it deferred again, so that memory is
    preserved. Also applies RescaleSlope and RescaleIntercept
    if available. """

    # Get original element
    el = ds['PixelData']

    # Get data
    data = ds.pixel_array

    # Remove data (mark as deferred)
    ds['PixelData'] = el
    del ds._pixel_array

    # Obtain slope and offset
    slope = 1
    offset = 0
    needFloats = False
    needApplySlopeOffset = False
    if 'RescaleSlope' in ds:
        needApplySlopeOffset = True
        slope = ds.RescaleSlope
    if 'RescaleIntercept' in ds:
        needApplySlopeOffset = True
        offset = ds.RescaleIntercept
    if int(slope) != slope or int(offset) != offset:
        needFloats = True
    if not needFloats:
        slope, offset = int(slope), int(offset)

    # Apply slope and offset
    if needApplySlopeOffset:

        # Maybe we need to change the datatype?
        if data.dtype in [np.float32, np.float64]:
            pass
        elif needFloats:
            data = data.astype(np.float32)
        else:
            # Determine required range
            minReq, maxReq = data.min(), data.max()
            minReq = min(
                [minReq, minReq * slope + offset, maxReq * slope + offset])
            maxReq = max(
                [maxReq, minReq * slope + offset, maxReq * slope + offset])

            # Determine required datatype from that
            dtype = None
            if minReq < 0:
                # Signed integer type
                maxReq = max([-minReq, maxReq])
                if maxReq < 2 ** 7:
                    dtype = np.int8
                elif maxReq < 2 ** 15:
                    dtype = np.int16
                elif maxReq < 2 ** 31:
                    dtype = np.int32
                else:
                    dtype = np.float32
            else:
                # Unsigned integer type
                if maxReq < 2 ** 8:
                    dtype = np.uint8
                elif maxReq < 2 ** 16:
                    dtype = np.uint16
                elif maxReq < 2 ** 32:
                    dtype = np.uint32
                else:
                    dtype = np.float32

            # Change datatype
            if dtype != data.dtype:
                data = data.astype(dtype)

        # Apply slope and offset
        data *= slope
        data += offset

    # Done
    return data


# The public functions and classes

def find_shape(dataset):
    """Find the expected shape of `dataset.pixel_array` without reading the pixel data.
    The returned shape is a tuple"""
    shape = dataset.Rows, dataset.Columns
    frames = dataset.get('NumberOfFrames', 1) or 1
    if frames > 1:
        shape = (frames,) + shape
    samples = dataset.SamplesPerPixel
    if samples > 1:
        conf = dataset.PlanarConfiguration
        if conf == 0:
            shape += (samples,)
        elif conf == 1:
            shape = (samples,) + shape
        else:
            raise ValueError(f"Invalid Planar Configuration: '{conf}'")
    return shape


def read_files(path, showProgress=False, readPixelData=False, force=False):
    """ read_files(path, showProgress=False, readPixelData=False)
    Reads dicom files and returns a list of DicomSeries objects, which
    contain information about the data, and can be used to load the
    image or volume data.
    The parameter "path" can also be a list of files or directories.
    If the callable "showProgress" is given, it is called with a single
    argument to indicate the progress. The argument is a string when a
    progress is started (indicating what is processed). A float indicates
    progress updates. The paremeter is None when the progress is finished.
    When "showProgress" is True, a default callback is used that writes
    to stdout. By default, no progress is shown.
    if readPixelData is True, the pixel data of all series is read. By
    default the loading of pixeldata is deferred until it is requested
    using the DicomSeries.get_pixel_array() method. In general, both
    methods should be equally fast.
    """

    # Init list of files
    files = []

    # Obtain data from the given path
    if isinstance(path, str):
        # Make dir nice
        basedir = os.path.abspath(path)
        # Check whether it exists
        if not os.path.isdir(basedir):
            raise ValueError('The given path is not a valid directory.')
        # Find files recursively
        _listFiles(files, basedir)

    elif isinstance(path, (tuple, list)):
        # Iterate over all elements, which can be files or directories
        for p in path:
            if os.path.isdir(p):
                _listFiles(files, os.path.abspath(p))
            elif os.path.isfile(p):
                files.append(p)
            else:
                print(f"Warning, the path '{p}' is not valid.")
    else:
        raise ValueError('The path argument must be a string or list.')

    # Set default progress callback?
    if showProgress is True:
        showProgress = _progressCallback
    if not hasattr(showProgress, '__call__'):
        showProgress = _dummyProgressCallback

    # Set defer size
    deferSize = 16383  # 128**2-1
    if readPixelData:
        deferSize = None

    # Gather file data and put in DicomSeries
    series = {}
    count = 0
    showProgress('Loading series information:')
    for filename in files:

        # Skip DICOMDIR files
        if filename.count("DICOMDIR"):
            continue

        # Try loading dicom ...
        try:
            dcm = pydicom.dcmread(filename, deferSize, force=force)
        except pydicom.filereader.InvalidDicomError:
            continue  # skip non-dicom file
        except Exception as why:
            if showProgress is _progressCallback:
                _progressBar.PrintMessage(str(why))
            else:
                print('Warning:', why)
            continue

        # Get SUID and register the file with an existing or new series object
        try:
            suid = dcm.SeriesInstanceUID
        except AttributeError:
            continue  # some other kind of dicom file
        if suid not in series:
            series[suid] = DicomSeries(suid, showProgress)
        series[suid]._append(dcm)

        # Show progress (note that we always start with a 0.0)
        showProgress(float(count) / len(files))
        count += 1

    # Finish progress
    showProgress(None)

    # Make a list and sort, so that the order is deterministic
    series = list(series.values())
    series.sort(key=lambda x: x.suid)

    # Split series if necessary
    for serie in reversed([serie for serie in series]):
        _splitSerieIfRequired(serie, series)

    # Finish all series
    showProgress('Analysing series')
    series_ = []
    for i in range(len(series)):
        try:
            series[i]._finish()
            series_.append(series[i])
        except Exception:
            pass  # Skip serie (probably report-like file without pixels)
        showProgress(float(i + 1) / len(series))
    showProgress(None)

    return series_


class DicomSeries(object):
    """ DicomSeries
    This class represents a series of dicom files that belong together.
    If these are multiple files, they represent the slices of a volume
    (like for CT or MRI). The actual volume can be obtained using loadData().
    Information about the data can be obtained using the info attribute.
    """

    # To create a DicomSeries object, start by making an instance and
    # append files using the "_append" method. When all files are
    # added, call "_sort" to sort the files, and then "_finish" to evaluate
    # the data, perform some checks, and set the shape and spacing
    # attributes of the instance.

    def __init__(self, suid, showProgress):
        # Init dataset list and the callback
        self._datasets = Sequence()
        self._showProgress = showProgress

        # Init props
        self._suid = suid
        self._info = None
        self._shape = None
        self._spacing = None

    @property
    def suid(self):
        """ The Series Instance UID. """
        return self._suid

    @property
    def shape(self):
        """ The shape of the data (nz, ny, nx).
        If None, the series contains a single dicom file. """
        return self._shape

    @property
    def spacing(self):
        """ The spacing (voxel distances) of the data (dz, dy, dx).
        If None, the series contains a single dicom file. """
        return self._spacing

    @property
    def info(self):
        """ A DataSet instance containing the information as present in the
        first dicomfile of this series. """
        return self._info

    @property
    def description(self):
        """ A description of the dicom series. Used fields are
        PatientName, shape of the data, SeriesDescription,
        and ImageComments.
        """

        info = self.info

        # If no info available, return simple description
        if info is None:
            return "DicomSeries containing %i images" % len(self._datasets)

        fields = []

        # Give patient name
        if 'PatientName' in info:
            fields.append("" + info.PatientName)

        # Also add dimensions
        if self.shape:
            tmp = [str(d) for d in self.shape]
            fields.append('x'.join(tmp))

        # Try adding more fields
        if 'SeriesDescription' in info:
            fields.append("'" + info.SeriesDescription + "'")
        if 'ImageComments' in info:
            fields.append("'" + info.ImageComments + "'")

        # Combine
        return ' '.join(fields)

    def __repr__(self):
        adr = hex(id(self)).upper()
        data_len = len(self._datasets)
        return "<DicomSeries with %i images at %s>" % (data_len, adr)

    def get_pixel_array(self):
        """ get_pixel_array()
        Get (load) the data that this DicomSeries represents, and return
        it as a numpy array. If this serie contains multiple images, the
        resulting array is 3D, otherwise it's 2D.
        If RescaleSlope and RescaleIntercept are present in the dicom info,
        the data is rescaled using these parameters. The data type is chosen
        depending on the range of the (rescaled) data.
        """

        # Can we do this?
        if not have_numpy:
            msg = "The Numpy package is required to use get_pixel_array.\n"
            raise ImportError(msg)

        # It's easy if no file or if just a single file
        if len(self._datasets) == 0:
            raise ValueError('Serie does not contain any files.')
        elif len(self._datasets) == 1:
            ds = self._datasets[0]
            slice = _getPixelDataFromDataset(ds)
            return slice

        # Check info
        if self.info is None:
            raise RuntimeError("Cannot return volume if series not finished.")

        # Set callback to update progress
        showProgress = self._showProgress

        # Init data (using what the dicom packaged produces as a reference)
        ds = self._datasets[0]
        slice = _getPixelDataFromDataset(ds)
        vol = np.zeros(self.shape, dtype=slice.dtype)
        vol[0] = slice

        # Fill volume
        showProgress('Loading data:')
        ll = self.shape[0]
        for z in range(1, ll):
            ds = self._datasets[z]
            vol[z] = _getPixelDataFromDataset(ds)
            showProgress(float(z) / ll)

        # Finish
        showProgress(None)

        # Done
        gc.collect()
        return vol

    def _append(self, dcm):
        """ _append(dcm)
        Append a dicomfile (as a pydicom.dataset.FileDataset) to the series.
        """
        self._datasets.append(dcm)

    def _sort(self):
        """ sort()
        Sort the datasets by instance number.
        """
        self._datasets.sort(key=lambda k: k.InstanceNumber)

    def _finish(self):
        """ _finish()
        Evaluate the series of dicom files. Together they should make up
        a volumetric dataset. This means the files should meet certain
        conditions. Also some additional information has to be calculated,
        such as the distance between the slices. This method sets the
        attributes for "shape", "spacing" and "info".
        This method checks:
          * that there are no missing files
          * that the dimensions of all images match
          * that the pixel spacing of all images match
        """

        # The datasets list should be sorted by instance number
        L = self._datasets
        if len(L) == 0:
            return
        elif len(L) < 2:
            # Set attributes
            ds = self._datasets[0]
            self._info = self._datasets[0]
            self._shape = find_shape(ds)
            self._spacing = ds.PixelSpacing
            return

        # Get previous
        ds1 = L[0]

        # Init measures to calculate average of
        distance_sum = 0.0

        # Init measures to check (these are in 2D)
        dimensions = find_shape(ds1)

        # row, column
        spacing = ds1.PixelSpacing

        for index in range(len(L)):
            # The first round ds1 and ds2 will be the same, for the
            # distance calculation this does not matter

            # Get current
            ds2 = L[index]

            # Get positions
            pos1 = float(ds1.ImagePositionPatient[2])
            pos2 = float(ds2.ImagePositionPatient[2])

            # Update distance_sum to calculate distance later
            # TODO: use ImageOrientationPatient's normal to calculate this distance
            distance_sum += abs(pos1 - pos2)

            # Test measures
            dimensions2 = find_shape(ds2)
            spacing2 = ds2.PixelSpacing
            if dimensions != dimensions2:
                # We cannot produce a volume if the dimensions match
                raise ValueError('Dimensions of slices does not match.')
            if spacing != spacing2:
                # We can still produce a volume, but we should notify the user
                msg = 'Warning: spacing does not match.'
                if self._showProgress is _progressCallback:
                    _progressBar.PrintMessage(msg)
                else:
                    print(msg)
            # Store previous
            ds1 = ds2

        # Create new dataset by making a deep copy of the first
        info = pydicom.dataset.Dataset()
        firstDs = self._datasets[0]
        for key in firstDs.keys():
            if key != 'PixelData':
                el = firstDs[key]
                info.add_new(el.tag, el.VR, el.value)

        # Finish calculating average distance
        # (Note that there are len(L)-1 distances)
        distance_mean = distance_sum / (len(L) - 1)

        # Store information that is specific for the series
        self._shape = (len(L),) + dimensions
        spacing.insert(0, distance_mean)
        self._spacing = spacing

        # Store
        self._info = info


if __name__ == '__main__':
    import sys

    if len(sys.argv) != 2:
        print("Expected a single argument: a directory with dicom files in it")
    else:
        adir = sys.argv[1]
        t0 = time.time()
        all_series = read_files(adir, False, False)
        print("Summary of each series:")
        for series in all_series:
            print(series.description)
            arr = series.get_pixel_array()
 


rootdir = r'Y:\pharmascan\huang\186RNL\01_019\baseline'

#patients = defaultdict(list)

for file in os.listdir(rootdir):
    d = os.path.join(rootdir, file)
    if os.path.isdir(d):
        print(os.getcwd()) #list present directory
        os.chdir(d)        #change prenent directory
        #print(d)
        #dcm_path = d+'\*.dcm'
        #for filename in glob.glob("*.dcm"):  # or whatever your pattern is
            #print(filename)

        ds = read_files(d)
        print(ds.get_pixel_array())


I still have the same problem. How to extract the matrix from ds? How to test the size of the image matrix?

The error message is as following:


Expected a single argument: a directory with dicom files in it 
Y:\pharmascan\huang\186RNL\01_019\baseline\Series1
--------------------------------------------------------------------------- 
AttributeError                                                          Traceback (most recent call last) 
<ipython-input-9-c19074814779> in <module> 
      713 
      714                                       ds = read_files(d) 
--> 715                                      print(ds.get_pixel_array()) 
AttributeError: 'list' object has no attribute 'get_pixel_array'


Thanks,

Qiang

xtsl

unread,
Aug 10, 2021, 11:05:41 AM8/10/21
to pydicom
Hi Darcy,

It works with pydicom_series file.  But, how to extract the matrix from ds? How to test the size of the image matrix?

The error message is as following:


Expected a single argument: a directory with dicom files in it 
Y:\pharmascan\huang\186RNL\01_019\baseline\Series1
--------------------------------------------------------------------------- 
AttributeError                                                          Traceback (most recent call last) 
<ipython-input-9-c19074814779> in <module> 
      713 
      714                                       ds = read_files(d) 
--> 715                                      print(ds.get_pixel_array()) 
AttributeError: 'list' object has no attribute 'get_pixel_array'


Thanks,

Qiang


xtsl

unread,
Aug 10, 2021, 11:08:47 AM8/10/21
to pydicom
Hi Darcy,

All my data are individual files . I must solve this problem before I do next processing.

Could you please help me to solve this problem?

Thanks,

Qiang

Darcy Mason

unread,
Aug 10, 2021, 2:12:14 PM8/10/21
to pydicom
I'm not sure if that last quoted error message was solved, but if not, as the error message says, there is no 'get_pixel_array'.  It is just `pixel_array` without the brackets.

The example I linked before shows the correct use, including gathering slices into a full 3d volume.

Reply all
Reply to author
Forward
0 new messages