This is by definition. If you create an irregular index, the freq = None, only in the case of a fully populated index is
the freq not None
You can certinaly reindex it be regular, but thats essentially the inverse dropna()
In [11]: s = Series(randn(10),index=date_range('20130101',periods=10))
In [12]: s.iloc[5:7] = np.nan
In [13]: s
Out[13]:
2013-01-01 0.916120
2013-01-02 2.394347
2013-01-03 -0.970764
2013-01-04 -0.792843
2013-01-05 -0.369776
2013-01-06 NaN
2013-01-07 NaN
2013-01-08 0.203474
2013-01-09 -0.697791
2013-01-10 -0.972242
Freq: D, dtype: float64
In [14]: s.dropna()
Out[14]:
2013-01-01 0.916120
2013-01-02 2.394347
2013-01-03 -0.970764
2013-01-04 -0.792843
2013-01-05 -0.369776
2013-01-08 0.203474
2013-01-09 -0.697791
2013-01-10 -0.972242
dtype: float64