has links to many of them. I tend to use (from my ticket on the same,
https://github.com/pydata/pandas/issues/5494) s.groupby((s != s.shift()).cumsum()), e.g:
>>> s = pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 1, 1, 3, 3, 2, 2])
>>> s.groupby((s != s.shift()).cumsum())
<pandas.core.groupby.SeriesGroupBy object at 0xb364b4c>
>>> s.groupby((s != s.shift()).cumsum()).groups
{1: [0L, 1L, 2L], 2: [3L, 4L, 5L], 3: [6L, 7L], 4: [8L, 9L], 5: [10L, 11L], 6: [12L, 13L]}