Nanotehnoloģijas

0 views
Skip to first unread message

Oswalda Shutte

unread,
Aug 5, 2024, 12:33:31 AM8/5/24
to prosoonunun
Nanotehnoloģijāuzkrātās zināšanas tiek pielietotas fizikā, ķīmijā, bioloģijā, ģenētikā un citās zinātnes nozarēs. Nanotehnoloģija ir salīdzinoši jauna zinātnes nozare, bet tā mūsdienās ļoti strauji attīstās un sniedz daudzsološu nākotnes vīziju zinātnē. Nanoobjektiem klasiskās fizikas likumi bieži vien ir nepietiekoši, tādēļ ka, atšķirībā no makroskopiskiem ķermeņiem, uz nanoobjektiem iedarbojas kvantu mehānikas likumi, kas tiem piešķir daudz jaunu fizikālu un ķīmisku īpašību. Tieši tās varētu būt nozīmīgas elektronikas, telesakaru, medicīnas, bioinženierijas un citu zinātņu turpmākā attīstībā.

Plaši tiek diskutēts arī par nanotehnoloģijas iespējami negatīvo ietekmi uz dabu, vidi un pasauli kopumā. Centrālais jautājums, par ko zinātnieki diskutē ir nanomateriālu ietekme uz vidi un par to iespējamo toksiskumu.


Mikroshēmu ražošana ir tehnoloģijas nozare, kurā jau relatīvi sen nodarbojās ar maza izmēra sistēmām. Iekārtu samazināšanas attīstība visizteiksmīgāk ir novērojama tieši šajā jomā. Mikroelektronikas revolūcija aizsākās 1947. gada 24. decembrī, kad Džons Bardīns, Volters Brateins un Viljams Šoklijs no Bell Telephone Laboratories, izmantojot tikai pavisam īsu laiku pieejamos ļoti tīros pusvadītāju paraugus, izveidoja pirmo cietvielu tranzistoru. Tas bija germānija punkta kontakta tranzistors. Vēlāk atklājās, ka šādas līdzīgas konstrukcijas tranzistors bija izgudrots jau 1925. gadā, kad Jūlijs Edgars Lilinfelds (Julius Edgar Lilienfeld) patentēja MOSFET tranzistoru (metāla oksīda pusvadītāja laukefekta tranzistoru). Cietvielu tranzistori, būdami mazāki nekā pirms tam lietotās vakuuma triodes, darbojās, izmantojot ievērojami mazāku elektrisko jaudu, kā arī sabojājās ievērojami retāk.


1958. gadā Džeks Kilbijs (Jack Kilby) no Texas Instruments nolēma apvienot visu elektrisko ķēdi, ieskaitot komponentes un savienojošos vadus, izvietojot to uz viena germānija parauga, tādējādi radot pirmo (integrālo) mikroshēmu. Laika gaitā mikroshēmas ir attīstījušās par ierīcēm, kuras satur miljardiem tranzistoru. Šīs attīstības galvenais virzītājspēks ir tranzistoru un citu ķēdes elementu samazināšana, kuras rezultātā mikroshēmas mazāko elementu izmēri sasniedza tikai dažu nanometru desmitus.


Saskaņā ar Intel Corporation līdzdibinātāja Gordona Mūra 1965. gadā formulēto empīrisko likumu (Mūra likumu), tranzistoru skaits uz vienas mikroshēmas ik pēc diviem gadiem divkāršojas. Pašlaik tehnoloģiju attīstības temps saskan ar šo likumu, un to izmanto tālākas mikroshēmu attīstības paredzēšanai. Lai uzturētu šādu tempu, nepieciešams arvien vairāk samazināt tranzistoru lineāros izmērus, tas ir, aptuveni 0,7 reizes ik pēc trim gadiem. 2007. gadā masveida ražošanā veidotu tranzistoru pamatelementu izmēri bija 45 nanometri. 32 nanometru tehnoloģijas ir sagaidāmas 2009./2010. gadā Intel procesoros "Clarkdale" un "Arrandale". Ekstrapolējot šādu attīstību, ir sagaidāms, ka 2060. gadā tranzistoru izmēriem jāsasniedz atoma izmēri. Paralēli mikroshēmu samazināšanai, samazinās arī to cena. Ja 1970. gados datora 1 megabaits operatīvās atmiņas maksāja vairāk nekā privātmāja, tad mūsdienās 1 megabaits maksā mazāk par santīmu.


Šīs problēmas risina uz nanomateriāliem balstītās nanoierīces. Veiksmīga nanoierīču izveidošana ietekmēs nākamās paaudzes mikroshēmu attīstību. Jau tagad ir izveidoti uz oglekļa nanovadiem balstīti viena elektrona tranzistori un laukefekta tranzistori, kā arī loģiskās shēmas. Ir pierādīts, ka dopētas polimēru molekulas var kalpot kā nanoizmēra vadi, ļaujot tādā veidā izmantot jaunus materiālus un procesus elektronikas ražošanā.


Nanomateriālu īpašības ietekmē tas, ka liela vielu sastādošo atomu daļa atrodas uz materiāla virsmas, kas ir pretstatā lielākām sistēmām, kur vairums atomu atrodas tilpumā. Līdz ar to materiāla īpašības lielākoties ir atkarīgas no virsmas atomu īpašībām. Ja sistēmas izmēri ir mazāki par Debaija rādiusu, tad varam sagaidīt makroskopiskajā pasaulē nenovērojamas īpašības. Nanomateriālu īpatnības ir to lielā virsmas enerģija un kvantu īpašības. Nanomateriālos bieži vien ir mazs defektu daudzums, jo nanomateriāliem piemīt pašattīrīšanas īpašības, atdzesējot izkausētu materiālu. Šī procesa rezultātā piejaukumi un defekti pārvietojas uz materiāla virsmu.


Maza izmēra iekārtām viņš paredzēja dažādus pielietojumus, kā, piemēram, liela daudzuma informācijas uzglabāšana vai "ļoti interesanta iespēja ķirurģijā būtu, ja varētu norīt ķirurgu. Ievietojot mehānisku ķirurgu asinsvadā, tas varētu doties uz sirdi, lai palūkotos, kas tur notiek. Viņš atrastu, kur sirds vārstulis nedarbojas un ar mazu nazīti to uzšķērstu". Fainmens uzskatīja, ka šādu iekārtu iespējamība pierāda bioloģisko sistēmu pastāvēšana, kuras pilda līdzvērtīgas funkcijas.


Feinmans arī norādīja "kad mēs nonākam pie ļoti, ļoti, ļoti maza mēroga, piemēram, elektriskās ķēdes, kas sastāv no septiņiem atomiem, tas mēs iegūstam daudzas jaunas parādības, kuras paver pilnīgi jaunas iespējas. Atomi ļoti mazā mērogā neuzvedas līdzīgi lietām lielā mērogā, jo tiem jāapmierina kvantu mehānikas likumi. Tādēļ, spēlējoties ar atomiem mazā mērogā, mēs darbojamies ar atšķirīgiem likumiem un varam sagaidīt citādu uzvedību".


Viens no lielākajiem impulsiem nanotehnoloģiju attīstībā bija 1960. gados, kad sāka parādīties pirmie instrumenti, kuri ir izmantojami nanoobjektu pētīšanai, proti skenējošie elektronmikroskopi. 1980. gados tika izveidoti atomspēku mikroskopi un skenējošais tuneļmikroskops, kuriem bija būtiska nozīme nanoizmēru struktūru un arī individuālu atomu pētīšanai un manipulēšanai.


Mūsdienās tiek izmantotas dažādas pieejas tehnoloģiskai nanoobjektu izveidei. Piemēram, mikroshēmas tiek veidotas uz materiālu virsmas kā skulptūras, noņemot lieko materiālo vai uznesot jauno. Šādu pieeju, kad no liela objekta veido mazas struktūras, sauc par "no augšas uz leju" (angļu: top down) pieeju. Pretēji, tas ir, "no lejas uz augšu" (bottom up) veido lielas struktūras spontāni no atomiem vai molekulām, piemeklējot piemērotus ārējos nosacījumus. Piemērs no pašorganizējošām nanostruktūrām ir oglekļa nanocaurulīšu iegūšana no kvēpiem. Līdzīgi arī bioloģiskie organismi ir izveidoti no bioloģiskām šūnām, kuras pilnībā nosaka šo organismu bioloģiskās īpašības. Savukārt šūnas izveidojas, pašorganizējoties molekulām.


Tāpat kā Fainmens, arī Drekslers norādīja, ka nav jāpierāda nanotehnoloģiju iespējamība. Šāds pierādījums eksistē dabā. Drekslers rakstīja šādi: "Tomēr koki nav primitīvi. Lai uztaisītu koku un lapas, tie negriež, nemaļ, nemaisa, necep, neapsmidzina, nekodina. Tā vietā tie savāc Saules enerģiju, izmantojot molekulārās elektroniskās ierīces, fotosintēzes reakcijas centrus hloroplastā. Tie izmanto šo enerģiju, lai darbinātu molekulārās mašīnas, ierīces ar kustīgām detaļām no precīzi izveidotām molekulārām struktūrām, kuras pārveido oglekļa dioksīdu un ūdeni, skābekli un molekulārās struktūras, kuras citas molekulārās mašīnas izmanto sakņu, zaru un lapu būvēšanai. Katra koka lapa ir sarežģītāka nekā kosmiskais kuģis, ar daudz smalkākām detaļām nekā jaunākais čips no Silīcija ielejas. Tas viss panākts bez trokšņa, siltuma izdalīšanās, toksiskiem dūmiem un cilvēku darba, tieši pretēji, kaitīgie izmeši tiek pārstrādāti koka darbības rezultātā. Šādi raugoties, koki ir augsta tehnoloģija. Čipi un raķetes nav". Patiešām, pētot bioloģiskās sistēmas, var atrast lielu daudzveidību daudzfunkcionālu nanoizmēra mehānismu, kurus daba dabiskās izlases rezultātā ir pilnveidojusi miljonu gadu garumā.


Cilvēces attīstības laikā tehnoloģijas ir galvenokārt attīstījušās, veidojot no cilvēkam viegli manipulējamiem objektiem lielākas struktūras: apģērbus, pulksteņus, mašīnas, mājas, tiltus, stadionus, kanālus, pilsētas. Taču tehnoloģijas miniaturizācija, veidojot struktūras no nanomateriāliem, sniedz tādas pašas, ja ne lielākas iespējas. Mazākā struktūra, ko vēl varētu manipulēt ar rokām, varētu būt ap milimetru. 1 milimetrs attiecas pret atoma 0,1 nanometra izmēru tāpat, kā 10 kilometri pret 1 milimetru. Tātad visa tā tehnoloģiju bagātība, kas ir iespējama mērogā no 1 milimetra līdz 10 kilometriem, varētu būt iespējama arī mērogā zem milimetra, ja par struktūru pamatelementu izmantotu atomus. Daba jau ir izveidojusi daudzus organismus, kuru izmēri ir ļoti mazi: putekļu ērcīte ir ap 200 mikrometru liela, cilvēka mats ir aptuveni 100 mikrometru resns, sarkano asinsķermenīšu (eritrocītu) izmērs ir ap 5 mikrometriem, gripas vīrusam ap 100 nanometriem, flagellas ap 20 nanometriem, šūnu ķīmiskās enerģijas avota adenozīntrifosfāta (ATF, angliski ATP) molekulas izmērs ir ap 10 nanometriem, DNS diametrs ir tikai daži nanometri, bet C60 diametrs ir 0,7 nanometri.


Lai attīstītu nanotehnoloģijas, ir labi jāpārzina gan bioloģija, gan ķīmija. Viena no nanotehnoloģiju īpatnībām ir tā, ka tā atrodas fizikas, ķīmijas un bioloģijas krustcelēs. Klasiskais dabaszinātņu sadalījums varētu būt cēlonis tam, ka pētījumi nanozinātņu jomā sākās diezgan vēlu. Taču agrāk novārtā atstātie starpdisciplinārie pētījumi mūsdienās piedzīvo strauju attīstību.


Pretēji tam kā ir notikusi tehnoloģiju attīstība pagātnē, attīstot nanotehnoloģijas vajadzētu laicīgi novērtēt to ietekmi uz vidi un cilvēku veselību. Lai arī nav pētījumu, kas liecinātu par nanotehnoloģiju īpašu ļaunumu, varētu sagaidīt, ka nanodaļiņas, pateicoties to mazajiem izmēriem un lielam virsmas laukumam, varētu ļoti efektīvi nokļūt cilvēka organismā un aktīvi reaģēt ar cilvēka organismā esošajām šūnām. Šādi procesi diemžēl ir ļoti maz pētīti un attīstot nanotehnoloģijas būtu nepieciešama lielāka izpratne par nanomateriālu mijiedarbību ar cilvēka organismu.

3a8082e126
Reply all
Reply to author
Forward
0 new messages