Cochrane Reviews include an assessment of the risk of bias in each included study (see Chapter 7 for a general discussion of this topic). When randomized trials are included, the recommended tool is the revised version of the Cochrane tool, known as RoB 2, described in this chapter. The RoB 2 tool provides a framework for assessing the risk of bias in a single result (an estimate of the effect of an experimental intervention compared with a comparator intervention on a particular outcome) from any type of randomized trial.
The RoB 2 tool is structured into domains through which bias might be introduced into the result. These domains were identified based on both empirical evidence and theoretical considerations. This chapter summarizes the main features of RoB 2 applied to individually randomized parallel-group trials. It describes the process of undertaking an assessment using the RoB 2 tool, summarizes the important issues for each domain of bias, and ends with a list of the key differences between RoB 2 and the earlier version of the tool. Variants of the RoB 2 tool specific to cluster-randomized trials and crossover trials are summarized in Chapter 23.
The full guidance document for the RoB 2 tool is available at www.riskofbias.info: it summarizes the empirical evidence underlying the tool and provides detailed explanations of the concepts covered and guidance on implementation.
If some patients do not receive their assigned intervention or deviate from the assigned intervention after baseline, these effects will differ, and will each be of interest. For example, the estimated effect of assignment to intervention would be the most appropriate to inform a health policy question about whether to recommend an intervention in a particular health system (e.g. whether to instigate a screening programme, or whether to prescribe a new cholesterol-lowering drug), whereas the estimated effect of adhering to the intervention as specified in the trial protocol would be the most appropriate to inform a care decision by an individual patient (e.g. whether to be screened, or whether to take the new drug). Review authors should define the intervention effect in which they are interested, and apply the risk-of-bias tool appropriately to this effect.
The effect of principal interest should be specified in the review protocol: most systematic reviews are likely to address the question of assignment rather than adherence to intervention. On occasion, review authors may be interested in both effects of interest.
Trial authors often estimate the effect of intervention using more than one approach. They may not explain the reasons for their choice of analysis approach, or whether their aim is to estimate the effect of assignment or adherence to intervention. We recommend that when the effect of interest is that of assignment to intervention, the trial result included in meta-analyses, and assessed for risk of bias, should be chosen according to the following order of preference:
The signalling questions aim to provide a structured approach to eliciting information relevant to an assessment of risk of bias. They seek to be reasonably factual in nature, but some may require a degree of judgement. The response options are:
Signalling questions should be answered independently: the answer to one question should not affect answers to other questions in the same or other domains other than through determining which subsequent questions are answered.
A free text box alongside the signalling questions and judgements provides space for review authors to present supporting information for each response. In some instances, when the same information is likely to be used to answer more than one question, one text box covers more than one signalling question. Brief, direct quotations from the text of the study report should be used whenever possible. It is important that reasons are provided for any judgements that do not follow the algorithms. The tool also provides space to indicate all the sources of information about the study obtained to inform the judgements (e.g. published papers, trial registry entries, additional information from the study authors).
RoB 2 includes optional judgements of the direction of the bias for each domain and overall. For some domains, the bias is most easily thought of as being towards or away from the null. For example, high levels of switching of participants from their assigned intervention to the other intervention may have the effect of reducing the observed difference between the groups, leading to the estimated effect of adhering to intervention (see Section 8.2.2) being biased towards the null. For other domains, the bias is likely to favour one of the interventions being compared, implying an increase or decrease in the effect estimate depending on which intervention is favoured. Examples include manipulation of the randomization process, awareness of interventions received influencing the outcome assessment and selective reporting of results. If review authors do not have a clear rationale for judging the likely direction of the bias, they should not guess it and can leave this response blank.
The response options for an overall risk-of-bias judgement are the same as for individual domains. Table 8.2.b shows the approach to mapping risk-of-bias judgements within domains to an overall judgement for the outcome.
Once an overall judgement has been reached for an individual trial result, this information will need to be presented in the review and reflected in the analysis and conclusions. For discussion of the presentation of risk-of-bias assessments and how they can be incorporated into analyses, see Chapter 7. Risk-of-bias assessments also feed into one domain of the GRADE approach for assessing certainty of a body of evidence, as discussed in Chapter 14.
To randomize participants into a study, an allocation sequence that specifies how participants will be assigned to interventions is generated, based on a process that includes an element of chance. We call this allocation sequence generation. Subsequently, steps must be taken to prevent participants or trial personnel from knowing the forthcoming allocations until after recruitment has been confirmed. This process is often termed allocation sequence concealment.
Some review authors confuse allocation sequence concealment with blinding of assigned interventions during the trial. Allocation sequence concealment seeks to prevent bias in intervention assignment by preventing trial personnel and participants from knowing the allocation sequence before and until assignment. It can always be successfully implemented, regardless of the study design or clinical area (Schulz et al 1995, Jni et al 2001). In contrast, blinding seeks to prevent bias after assignment (Jni et al 2001, Schulz et al 2002) and cannot always be implemented. This is often the situation, for example, in trials comparing surgical with non-surgical interventions.
Randomization with no constraints is called simple randomization or unrestricted randomization. Sometimes blocked randomization (restricted randomization) is used to ensure that the desired ratio of participants in the experimental and comparator intervention groups (e.g. 1:1) is achieved (Schulz and Grimes 2002, Schulz and Grimes 2006). This is done by ensuring that the numbers of participants assigned to each intervention group is balanced within blocks of specified size (e.g. for every 10 consecutively entered participants): the specified number of allocations to experimental and comparator intervention groups is assigned in random order within each block. If the block size is known to trial personnel and the intervention group is revealed after assignment, then the last allocation within each block can always be predicted. To avoid this problem multiple block sizes may be used, and randomly varied (random permuted blocks).
Stratified randomization, in which randomization is performed separately within subsets of participants defined by potentially important prognostic factors, such as disease severity and study centres, is also common. In practice, stratified randomization is usually performed together with blocked randomization. The purpose of combining these two procedures is to ensure that experimental and comparator groups are similar with respect to the specified prognostic factors other than intervention. If simple (rather than blocked) randomization is used in each stratum, then stratification offers no benefit, but the randomization is still valid.
Another approach that incorporates both general concepts of stratification and restricted randomization is minimization. Minimization algorithms assign the next intervention in a way that achieves the best balance between intervention groups in relation to a specified set of prognostic factors. Minimization generally includes a random element (at least for participants enrolled when the groups are balanced with respect to the prognostic factors included in the algorithm) and should be implemented along with clear strategies for allocation sequence concealment. Some methodologists are cautious about the acceptability of minimization, while others consider it to be an attractive approach (Brown et al 2005, Clark et al 2016).
If future assignments can be anticipated, leading to a failure of allocation sequence concealment, then bias can arise through selective enrolment of participants into a study, depending on their prognostic factors. Ways in which this can happen include:
The last of these can occur when blocked randomization is used and assignments are known to the recruiter after each participant is enrolled into the trial. It may then be possible to predict future assignments for some participants, particularly when blocks are of a fixed size and are not divided across multiple recruitment centres (Berger 2005).
c80f0f1006