Her ability to solve complicated arithmetical problems with apparent ease and astonishing speed had stunned observers since the 1970s, when her unexplained brain power made even sophisticated digital devices of the day seem inadequate by comparison. Witty and sharp-minded, she possessed exceptional powers of retention and appeared to harness the power of several mnemonic devices in her brain.
In 1988 she visited the United States, where the educational psychologist Professor Arthur Jensen tried to unlock the secret of her abilities. At Stanford University he monitored her performance in several mathematical tasks involving large numbers and subjected her to a series of tests.
Shakuntala Devi was born on November 4 1929 in Bangalore into an orthodox Brahmin family. Her father, refusing to follow the family priestly tradition, became a circus performer, excelling in trapeze, tightrope, lion taming and human cannonball acts.
Want to use mathematics at the highest levels in the world of work or research? Then our four-year MSci course is designed for you. We will challenge you to take your love of mathematics further and help you to develop an invaluable portfolio of skills that will set you apart in your future career. Guided by internationally recognised experts in the field, you will gain a thorough knowledge and understanding of all the key methods and concepts of pure and applied mathematics, probability, statistics, financial mathematics and the mathematics of information in your first year. You will then be free to tailor your studies to the areas that interest you the most, thanks to the courses modular structure, and in year 4 you will have the opportunity to complete a supervised project, alongside further optional modules.
Join our friendly and inspiring department and you will benefit from a thoroughly supportive learning environment. We offer small group tutorials, problem solving sessions, practical workshops and IT classes, as well as generous staff office hours and a dedicated personal adviser to guide you through your studies. Employability skills are embedded throughout your degree, and we also offer CV writing workshops and a competitive work placement scheme.
In this module, you will develop an understanding of how the techniques for solving differential equations can be applied to describe the real world. You will look at situations from balls flying through the air to planets orbiting the stars, including why the moon continues to orbit the Earth and not the Sun. You will consider the chatotic motion of a pendulum, and examine Einstein's theory of special relativity to describe the propagation of matter and light at high speeds.
In this module you will develop an understanding of the notion of probability and the basic theory and methods of statistics. You will look at random variables and their distributions, calculate probabilities of events that arise from standard distributions, estimate means and variances, and carry out t tests for means and differences of means. You will also consider the notions of types of error, power and significance levels, gaining experience in sorting a variety of data sets in a scientific way.
In this module you will develop an understanding of the calculus functions of more than one variable and how it may be used in areas such as geometry and optimisation. You learn how to manipulate partial derivatives, construct and manipulate line integrals, represent curves and surfaces in higher dimensions, calculate areas under a curve and volumes between surfaces, and evaluate double integrals, including the use of change of order of integration and change of coordinates.
In this module you will develop an understanding of the fundamental algebraic structures, including familiar integers and polynomial rings. You will learn how to apply Euclid's algorithm to find the greatest common divisor of two integers, and use mathematical induction to prove simple results. You will examine the use of arithmetic operations on complex numbers, extract roots of complex numbers, prove De Morgan's laws, and determine whether a given mapping is bijective.
In this module you will develop an understanding of basic linear algebra, in particular the use of matrices and vectors. You will look at the basic theoretical and computational techniques of matrix theory, examining the power of vector methods and how they may be used to describe three-dimensional space. You will consider the notions of field, vector space and subspace, and learn how to calculate the determinant of an n x n matrix.
Real analysis studies the behaviour of the real numbers and real-valued functions. It provides the foundations of calculus, and is essential to both pure and applied mathematics. This module provides a user-friendly introduction to key ideas of real analysis, illustrated with copious examples. It examines topics such as the properties and axioms of the real numbers, and convergence of infinite sequences and infinite series.
In this module the vector calculus methods are applied to a variety of problems in the physical sciences, with a focus on electromagnetism and optics. On completion of the module, the student should be able to calculate relevant physical quantities such as field strengths, forces, and energy distributions in static as well as dynamical electromagnetic systems and be able to treat mathematically the interactions between moving electrical charges, magnets and optical fields.
In this module you will develop an understanding of statistical modelling, becoming familiar with the theory and the application of linear models. You will learn how to use the classic simple linear regression model and its generalisations for modelling dependence between variables. You will examine how to apply non-parametric methods, such as the Wilxocon and Kolmogorov-Smirnov goodness-of-fit tests, and learn to use the R open source software package.
In this module you will develop an understanding of the basic principles of the mathematical theory of probability. You will use the fundamental laws of probability to solve a range of problems, and prove simple theorems involving discrete and continuous random variables. You will learn how to forumulate an explain fundamental limit theorems, such as the weak law of large numbers and the central limit theorem.
This course introduces you to the basics of Python programming for building solutions to mathematics-based tasks. This will encourage a deeper understanding of the mathematics that you will learn across your degree, developing general mathematical skills and group working. Additionally, the module will provide guidance through the process of applying for a summer internship or job, as well as reviewing the range of career options available to Mathematicians upon graduation.
In this module you will develop an understanding of vectors and matrices within the context of vector spaces, with a focus on deriving and using various decompositions of matrices, including eigenvalue decompositions and the so-called normal forms. You will learn how these abstract notions can be used to solve problems encountered in other fields of science and mathematics, such as optimisation theory.
The aim of this module is to enable you to plan and carry out longer assignments, which require significant preparation and/or advanced data analysis. This module will lay the groundwork for the comprehensive project work undertaken in your final year project whilst introducing you to some of the research activities within the Department. You will establish skills including report writing and oral presentations in the context of employment.
You will carry out a detailed investigation on a topic of your choosing, guided by an academic supervisor. You will prepare a written report around 10,000 words in length, and give a fifteen-minute presentation outlining your findings.
There are a number of optional course modules available during your degree studies. The following is a selection of optional course modules that are likely to be available. Please note that although the College will keep changes to a minimum, new modules may be offered or existing modules may be withdrawn, for example, in response to a change in staff. Applicants will be informed if any significant changes need to be made.
In this module you will develop an understanding of the concepts arising when the boundary conditions of a differential equation involves two points. You will look at eigenvalues and eigenfunctions in trigonometric differential equations, and determine the Fourier series for a periodic function. You will learn how to manipulate the Dirac delta-function and apply the Fourier transform. You will also examine how to solve differential equations where the coefficients are variable.