Hi All,
I am using popabc to differentiate between migration and no migration scenario for my data set. I am using 9 microsatellite markers for this. For now I am using simple 2 pop models. I am doing the no migration model first. My prior files are as follows:
1000000 2 2 9
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
m m m m m m m m m
0
1 10 100000
1 10 100000
1 10 100000
1 1000 1e+06
0
0
2 0.0001 0 0.0005 0
0
0
0
----------------------------------------------------------------------------------------
PopABC - Mark Beaumont & Joao Lopes 01/05/09
>no_iterations, generation_time, no_populations, no_loci
>escalar per locus (autosome - 1; X-linked - 0.75; Y-linked or mitDNA - 0.25)
>type of DNA data (s - sequence; m - microssatelites)
>topology: 0 - uniform distribution;
3 - uniform distribution (and choose a Model marker).
>ne1 params: 1 - uniform distribtuion;
2 - generalized gamma distribution.
>ne2 params
>neanc1 params
>t1 params: 1 - uniform distribtuion;
2 - generalized gamma distribution.
>mig1 params: 0 - zero migration;
1 - uniform distribtuion;
2 - generalized gamma distribution;
3 - uniform distribution (on number of migrations);
4 - generalized gamma distribution (on number of migrations).
[for 3 and 4 real mig rate is calculated as nmig/Ne]
>mig2 params
>mutM params: 0 - zero mutation;
1 - lognormal distribution: (mean of mean(log10); stdev of mean(log10);
mean of Sdev(log10); stdev of stdev(log10). Stdev truncated at 0.
2 - normal distribution: (mean of mean; stdev of mean; mean of Sdev;
stdev of stdev. Stdev truncated at 0.
>mutS params
>recM params: 0 - zero mutation;
1 - lognormal distribution: (mean of mean(log10); stdev of mean(log10);
mean of Sdev(log10); stdev of stdev(log10). Stdev truncated at 0.
2 - normal distribution: (mean of mean; stdev of mean; mean of Sdev;
stdev of stdev. Stdev truncated at 0.
>recS params
----------------------------------------------------------------------------------------
Tree topology:
|| PopA1
|| |
|| |
t1|| ---------
|| | |
|| | |
\/ Pop1 Pop2
I have a few questions regarding the out put.
1) The mutation rate I have given is taken as a constant in my reject file. I am not sure why there is no variation in microsatellite mutation rate.
Output reject file:
| top |
avMutM |
sdMutM |
avRecM |
sdRecM |
t1 |
| 1 |
0.0001 |
0.0005 |
0 |
0 |
75389.7 |
| 1 |
0.0001 |
0.0005 |
0 |
0 |
84598.5 |
| 1 |
0.0001 |
0.0005 |
0 |
0 |
68973.1 |
| 1 |
0.0001 |
0.0005 |
0 |
0 |
40349 |
| 1 |
0.0001 |
0.0005 |
0 |
0 |
20459.7 |
| 1 |
0.0001 |
0.0005 |
0 |
0 |
21897.8 |
| 1 |
0.0001 |
0.0005 |
0 |
0 |
69626.9 |
| 1 |
0.0001 |
0.0005 |
0 |
0 |
9783.84 |
| 1 |
0.0001 |
0.0005 |
0 |
0 |
11719.4 |
| 1 |
0.0001 |
0.0005 |
0 |
0 |
30760.3 |
| 1 |
0.0001 |
0.0005 |
0 |
0 |
135635 |
| 1 |
0.0001 |
0.0005 |
0 |
0 |
2323.35 |
| 1 |
0.0001 |
0.0005 |
0 |
0 |
84041.4 |
| 1 |
0.0001 |
0.0005 |
0 |
0 |
15331.2 |
| 1 |
0.0001 |
0.0005 |
0 |
0 |
33732.9 |
| 1 |
0.0001 |
0.0005 |
0 |
0 |
13914.2 |
| 1 |
0.0001 |
0.0005 |
0 |
0 |
20896 |
| 1 |
0.0001 |
0.0005 |
0 |
0 |
69444.3 |
| 1 |
0.0001 |
0.0005 |
0 |
0 |
8421.47 |
| 1 |
0.0001 |
0.0005 |
0 |
0 |
74364.3 |
| 1 |
0.0001 |
0.0005 |
0 |
0 |
163115 |
| 1 |
0.0001 |
0.0005 |
0 |
0 |
210900 |
| 1 |
0.0001 |
0.0005 |
0 |
0 |
44407.9 |
| 1 |
0.0001 |
0.0005 |
0 |
0 |
2485.12 |
| 1 |
0.0001 |
0.0005 |
0 |
0 |
44820.8 |
| 1 |
0.0001 |
0.0005 |
0 |
0 |
12439.9 |
| 1 |
0.0001 |
0.0005 |
0 |
0 |
12941.8 |
2) To evaluate if my priors are exhaustive I generated the prior-posterior plots for my data set. My problem is I don't get good posteriors for NeA and tev. Can you please suggest how I should vary my priors to get better posteriors. I have attached the graphs for the above mentioned parameters.
Thank you.
Regards,
Kritika