Petroleumrefining processes are the chemical engineering processes and other facilities used in petroleum refineries (also referred to as oil refineries) to transform crude oil into useful products such as liquefied petroleum gas (LPG), gasoline or petrol, kerosene, jet fuel, diesel oil and fuel oils.[1][2][3]
Refineries and petroleum industries are very large industrial complexes that involve many different processing units and auxiliary facilities such as utility units and storage tanks. Each refinery has its own unique arrangement and combination of refining processes largely determined by the refinery location, desired products and economic considerations.
Prior to the nineteenth century, petroleum was known and utilized in various fashions in Babylon, Egypt, China, Philippines, Rome and along the Caspian Sea. The modern history of the petroleum industry is said to have begun in 1846 when Abraham Gessner of Nova Scotia, Canada devised a process to produce kerosene from coal. Shortly thereafter, in 1854, Ignacy Lukasiewicz began producing kerosene from hand-dug oil wells near the town of Krosno, Poland. The first large petroleum refinery was built in Ploesti, Romania in 1856 using the abundant oil available in Romania.[7][8]
In North America, the first oil well was drilled in 1858 by James Miller Williams in Ontario, Canada. In the United States, the petroleum industry began in 1859 when Edwin Drake found oil near Titusville, Pennsylvania.[9] The industry grew slowly in the 1800s, primarily producing kerosene for oil lamps. In the early twentieth century, the introduction of the internal combustion engine and its use in automobiles created a market for gasoline that was the impetus for fairly rapid growth of the petroleum industry. The early finds of petroleum like those in Ontario and Pennsylvania were soon outstripped by large oil "booms" in Oklahoma, Texas and California.[10]
Prior to World War II in the early 1940s, most petroleum refineries in the United States consisted simply of crude oil distillation units (often referred to as atmospheric crude oil distillation units). Some refineries also had vacuum distillation units as well as thermal cracking units such as visbreakers (viscosity breakers, units to lower the viscosity of the oil). All of the many other refining processes discussed below were developed during the war or within a few years after the war. They became commercially available within 5 to 10 years after the war ended and the worldwide petroleum industry experienced very rapid growth. The driving force for that growth in technology and in the number and size of refineries worldwide was the growing demand for automotive gasoline and aircraft fuel.
In the United States, for various complex economic and political reasons, the construction of new refineries came to a virtual stop in about the 1980s. However, many of the existing refineries in the United States have revamped many of their units and/or, constructed add-on units in order to: increase their crude oil processing capacity, increase the octane rating of their product gasoline, lower the sulfur content of their diesel fuel and home heating fuels to comply with environmental regulations and comply with environmental air pollution and water pollution requirements.
The crude oil distillation unit (CDU) is the first processing unit in virtually all petroleum refineries. The CDU distills the incoming crude oil into various fractions of different boiling ranges, each of which are then processed further in the other refinery processing units. The CDU is often referred to as the atmospheric distillation unit because it operates at slightly above atmospheric pressure.[1][2][14]
Below is a schematic flow diagram of a typical crude oil distillation unit. The incoming crude oil is preheated by exchanging heat with some of the hot, distilled fractions and other streams. It is then desalted to remove inorganic salts (primarily sodium chloride).
Following the desalter, the crude oil is further heated by exchanging heat with some of the hot, distilled fractions and other streams. It is then heated in a fuel-fired furnace (fired heater) to a temperature of about 398 C and routed into the bottom of the distillation unit.
The cooling and condensing of the distillation tower overhead is provided partially by exchanging heat with the incoming crude oil and partially by either an air-cooled or water-cooled condenser. Additional heat is removed from the distillation column by a pumparound system as shown in the diagram below.
As shown in the flow diagram, the overhead distillate fraction from the distillation column is naphtha. The fractions removed from the side of the distillation column at various points between the column top and bottom are called sidecuts. Each of the sidecuts (i.e., the kerosene, light gas oil and heavy gas oil) is cooled by exchanging heat with the incoming crude oil. All of the fractions (i.e., the overhead naphtha, the sidecuts and the bottom residue) are sent to intermediate storage tanks before being processed further.
The image below is a schematic flow diagram of a typical petroleum refinery that depicts the various refining processes and the flow of intermediate product streams that occurs between the inlet crude oil feedstock and the final end-products.
The diagram depicts only one of the literally hundreds of different oil refinery configurations. The diagram also does not include any of the usual refinery facilities providing utilities such as steam, cooling water, and electric power as well as storage tanks for crude oil feedstock and for intermediate products and end products.[1][2][15]
The crude is heated by a furnace and is sent to a distillation tower, where it is separated by boiling point. Then the material is converted by heating, pressure or a catalyst into finished products including fuels like gasoline and diesel, and specialty products like asphalt and solvents.
Petroleum, called crude oil in the industry, is a fossil fuel found in underground reservoirs. It is classified by density, sulfur content and acidity, and those factors determine how the oil is refined. Every barrel of crude oil can be turned into several products:
At our 15 refineries our throughput capacity of crude oil and other feedstocks is 3.2 million barrels per day. Depending on the size of the refinery, from 80,000 to 300,000+ barrels of crude oil per day, per refinery, is processed to make clean transportation fuels.
Refineries are complex facilities that take crude oil and turn it into a variety of products including the fuel that powers our vehicles, to asphalt and the building blocks for many plastics used in everyday life. In order to make these products, the refinery has a variety of units, storage tanks, pipelines, water cooling towers and much more. Refineries run 24/7.
A method of converting heavy crude oil into lighter desirable products such as gasoline and diesel fuel by breaking large hydrocarbon molecules into smaller molecules using heat, pressure and catalyst.
Introducing Refining 101, a three-part education series on the basics of petroleum refining. This series is broken into three episodes to illustrate at a high level, the types of crude oil, how refineries operate, and the various levels of complexity in refinery configurations.
We are focused on being the safest operator in the industry. Safety drives reliable, consistent operations that result in low emissions, protecting the environment as well as our neighbors.
Modern separation involves piping crude oil through hot furnaces. The resulting liquids and vapors are discharged into distillation units. All refineries have atmospheric distillation units, but more complex refineries may have vacuum distillation units.
Inside the distillation units, the liquids and vapors separate into petroleum components, called fractions, according to their boiling points. Heavy fractions are on the bottom and light fractions are on the top.
After distillation, heavy, lower-value distillation fractions can be processed further into lighter, higher-value products such as gasoline. At this point in the process, fractions from the distillation units are transformed into streams (intermediate components) that eventually become finished products.
The most widely used conversion method is called cracking because it uses heat, pressure, catalysts, and sometimes hydrogen to crack heavy hydrocarbon molecules into lighter ones. A cracking unit consists of one or more tall, thick-walled, rocket-shaped reactors and a network of furnaces, heat exchangers, and other vessels. Complex refineries may have one or more types of crackers, including fluid catalytic cracking units and hydrocracking/hydrocracker units.
Alkylation, for example, makes gasoline components by combining some of the gaseous byproducts of cracking. The process, which essentially is cracking in reverse, takes place in a series of large, horizontal vessels and tall, skinny towers.
The finishing touches occur during the final treatment. To make gasoline, refinery technicians carefully combine a variety of streams from the processing units. Octane level, vapor pressure ratings, and other special considerations determine the gasoline blend.
Both incoming crude oil and the outgoing final products are stored temporarily in large tanks on a tank farm near the refinery. Pipelines, trains, and trucks carry the final products from the storage tanks to locations across the country.
We advocate for public policies that promote growth and investment in the refining and petrochemical manufacturing industries to help drive our economy, add jobs, increase energy security and remain competitive in a global economy.
We offer a portfolio of first-in-class events that educate our members and other stakeholders on critical technical and advocacy issues, supporting the safety, security and success of the fuel and petrochemical industries.
Refining turns crude oil into usable products.
Petroleum refining separates crude oil into components used for a variety of purposes. The crude petroleum is heated and the hot gases are passed into the bottom of a distillation column. As the gases move up the height of the column, the gases cool below their boiling point and condense into a liquid. The liquids are then drawn off the distilling column at specific heights to obtain fuels like gasoline, jet fuel and diesel fuel.
3a8082e126