$$
\begin{aligned}
|v| &=\left| \left(
1 - \frac{x^2}{1 + z}, -\frac{xy}{1 + z}, -x
\right) \right| \\
&= 1 - 2 \frac{x^2}{1 + z} + \frac{x^4}{(1 + z)^2} + \frac{x^2y^2}{(1 + z)^2} + x^2 \\
&= 1 + \frac{
- 2x^2(1 + z) + x^4 + x^2y^2 + x^2(1 + z)^2
}{(1 + z)^2} \\
&= 1 + \frac{
-2x^2 - 2x^2z + x^4 + x^2y^2 + x^2 + 2x^2z + x^2z^2
}{(1 + z)^2} \\
&= 1 + \frac{
-2x^2 - 2x^2z + x^2(x^2 + y^2 + z^2) + x^2 + 2x^2z
}{(1 + z)^2} \\
&= 1
\end{aligned}
$$