Â
# Python program for
# Creation of Arrays
import numpy as np
Â
# Creating a rank 1 Array
arr = np.array([1, 2, 3])
print("Array with Rank 1: \n",arr)
Â
# Creating a rank 2 Array
arr = np.array([[1, 2, 3],
                [4, 5, 6]])
print("Array with Rank 2: \n", arr)
Â
# Creating an array from tuple
arr = np.array((1, 3, 2))
print("\nArray created using "
      "passed tuple:\n", arr)
Â
    }
}
$ python
>>> import tensorflow as tf
>>> tf.enable_eager_execution()
>>> tf.add(1, 2)
3
Â
Â
Â
$ Python: GUI
Import JSON
Â
Import Numpy as np
Import tensor flow as tf
Model parameters
Class{var=x}yes=+1
X=tf variable {[tf float32]}
B=tf variable {[tf float32]}
Model input and output
X = tf placeholder [{(tf float 32)]}
B = tf variable [{.tf float 32)]}
Linear _model =a x X x b
Y=if placeholder (tf float 32)
Â
A=loss
Loss – if reduce sum (tf float32)
Â
Â
Numpy protein sort at JSON:
Â
protein sort tf float= LLrrkk301 ldigpagplm gvvqygdnpa thfnlkthtn srdlktaiek itqrgglsnv grtisfvtkn      ffskangnrs gapnvvvvmv dgwptdkvee asrlarvsgi niffitiega aenekqyvve      pnfankavcr tngfyslhvq swfglhktlq plvkrvcdtd rlacsktcln sadigfvidg      sssvgtgnfr tvlqfvtnlt kefeisdtdt rigavqytye qrlefgfdky sskpdilnai      krvgywsggt stgaainfal eqlfkk
Â
Â
{
 "array": [
   1,
   2,
   3
 ],
 "boolean": true,
 "null": null,
 "number": 123,
 "object": {
   "a": "g",
   "c": "d",
   "e": "f"
 "h":"i":"k":"l":"m":"n":"p":"q";"r";"S":"t":"v":"w":"y":},
 "string": ""
}
Import json
Import numpy as np
With open (‘training-data-10k.json’) as f:
Data = json.load (f)
Xs = np.array (data [‘ys’])
YS = np.array (data[‘ys’])
X – train = xs[-10]
Y-train= ys [: -10]
x-train = xs[: -10]
x-test= xs [:-10]
y-test = ys[:-10]
open training data as g:
open(‘training_data -10k.jason’) as g:
Â
Â
Python: GUI
Import JSON
Import Numpy
Â
Numpy protein sort at JSON:
Â
’’’{
 "array= 4": [
   1,
   2,
   3
 ],
 "boolean": true,
 "null": null,
 "number": 123,
 "object": {
   "aa": "gg",
   "cc": "dd",
   "ee": "ff"
 "hh":"ii":"kk":"ll":"mm":"nn":"pp":"qq";
 "rr";"ss":"tt":"vv":"ww":"yy":},
 "string": ""
}’’’
Import json
Import numpy as np
With open (‘training-data-10k.json’) as f:
Data = json.load (f)
Xs = np.array (data [‘ys’])
YS = np.array (data[‘ys’])
X – train = xs[-10]
Y-train= ys [: -10]
x-train = xs[: -10]
x-test= xs [:-10]
y-test = ys[:-10]
open training data as g:
open(‘training_data -10k.jason’) as g:
Â
Â
Python: GUI
Import JSON
Import Numpy
Â
Numpy protein sort at JSON:
’’’{
 "array = 5": [
   1,
   2,
   3
 ],
 "boolean": true,
 "null": null,
 "number": 123,
 "object": {
   "aaa": "ggg",
   "ccc": "ddd",
   "eee": "fff"
 "hhh":"iii":"kkk":"lll":"mmm":"nnn":
 "ppp":"qqq";"rrr";"sss":"ttt":"vvv":
 "www":"yyy":"x";"xx"},
 "string": ""
}
Import json
Import numpy as np
With open (‘training-data-10k.json’) as f:
Data = json.load (f)
Xs = np.array (data [‘ys’])
YS = np.array (data[‘ys’])
X – train = xs[-10]
Y-train= ys [: -10]
x-train = xs[: -10]
x-test= xs [:-10]
y-test = ys[:-10]
open training data as g:
open(‘training_data -10k.jason’) as g:’’’
Â
Â
Â
Â
Â
Python: GUI
Import JSON
Import Numpy
Â
Numpy protein sort at JSON:
Â
’’’{
 "array": [
   1,
   2,
   3
 ],
 "boolean": true,
 "null": null,
 "number": 123,
 "object": {
   "xax": "xgx",
   "xcx": "xdx",
   "xex": "xfx"
 "xhx":"xix":"xkx":"xlx":"xmx":"xnx":
 "xpx":"xqx";"xrx";"xsx":"xtx":"xvx":
 "xwx":"xyx":},
 "string": ""
}’’’
Import json
Import numpy as np
With open (‘training-data-10k.json’) as f:
Data = json.load (f)
Xs = np.array (data [‘ys’])
YS = np.array (data[‘ys’])
X – train = xs[-10]
Y-train= ys [: -10]
x-train = xs[: -10]
x-test= xs [:-10]
y-test = ys[:-10]
open training data as g:
open(‘training_data -10k.jason’) as g:
Â
NEXT Model
Â
Cleansed lawn via observed constraint:
Exact to:
Â
TGVHNGGVTSALTTVASAGLLSQLANGVIALNL
Â
x <- rnorm(1000)
hx <- hist(x, breaks=100, plot=FALSE)
plot(hx, col=ifelse(abs(hx$breaks) < 1.669, 4, 2))
Â
Â
    }
}
$ python
>>> import tensorflow as tf
>>> tf.enable_eager_execution()
>>> tf.add(1, 2)
3
Â
Â
Â
$ Python: GUI
Import JSON
Â
Import Numpy as np
Import tensor flow as tf
Model parameters
Class{var=x}yes=+1
X=tf variable {[tf float32]}
B=tf variable {[tf float32]}
Model input and output
X = tf placeholder [{(tf float 32)]}
B = tf variable [{.tf float 32)]}
Linear _model =a x X x b
Y=if placeholder (tf float 32)
Â
A=loss
Loss – if reduce sum (tf float32)
Â
Â
Numpy protein sort at JSON:
Â
protein sort tf float= LLrrkktgvhnggvtsalttvasagllsqlangvialnl
Â
Â
{
 "array": [
   1,
   2,
   3
 ],
 "boolean": true,
 "null": null,
 "number": 123,
 "object": {
   "a": "g",
   "c": "d",
   "e": "f"
 "h":"i":"k":"l":"m":"n":"p":"q";"r";"S":"t":"v":"w":"y":},
 "string": ""
}
Import json
Import numpy as np
With open (‘training-data-10k.json’) as f:
Data = json.load (f)
Xs = np.array (data [‘ys’])
YS = np.array (data[‘ys’])
X – train = xs[-10]
Y-train= ys [: -10]
x-train = xs[: -10]
x-test= xs [:-10]
y-test = ys[:-10]
open training data as g:
open(‘training_data -10k.jason’) as g:
Â
Â
Python: GUI
Import JSON
Import Numpy
Â
Numpy protein sort at JSON:
Â
’’’{
 "array= 4": [
   1,
   2,
   3
 ],
 "boolean": true,
 "null": null,
 "number": 123,
 "object": {
   "aa": "gg",
   "cc": "dd",
   "ee": "ff"
 "hh":"ii":"kk":"ll":"mm":"nn":"pp":"qq";
 "rr";"ss":"tt":"vv":"ww":"yy":},
 "string": ""
}’’’
Import json
Import numpy as np
With open (‘training-data-10k.json’) as f:
Data = json.load (f)
Xs = np.array (data [‘ys’])
YS = np.array (data[‘ys’])
X – train = xs[-10]
Y-train= ys [: -10]
x-train = xs[: -10]
x-test= xs [:-10]
y-test = ys[:-10]
open training data as g:
open(‘training_data -10k.jason’) as g:
Â
Â
Python: GUI
Import JSON
Import Numpy
Â
Numpy protein sort at JSON:
’’’{
 "array = 5": [
   1,
   2,
   3
 ],
 "boolean": true,
 "null": null,
 "number": 123,
 "object": {
   "aaa": "ggg",
   "ccc": "ddd",
   "eee": "fff"
 "hhh":"iii":"kkk":"lll":"mmm":"nnn":
 "ppp":"qqq";"rrr";"sss":"ttt":"vvv":
 "www":"yyy":"x";"xx"},
 "string": ""
}
Import json
Import numpy as np
With open (‘training-data-10k.json’) as f:
Data = json.load (f)
Xs = np.array (data [‘ys’])
YS = np.array (data[‘ys’])
X – train = xs[-10]
Y-train= ys [: -10]
x-train = xs[: -10]
x-test= xs [:-10]
y-test = ys[:-10]
open training data as g:
open(‘training_data -10k.jason’) as g:’’’
Â
Â
Â
Â
Â
Python: GUI
Import JSON
Import Numpy
Â
Numpy protein sort at JSON:
Â
’’’{
 "array": [
   1,
   2,
   3
 ],
 "boolean": true,
 "null": null,
 "number": 123,
 "object": {
   "xax": "xgx",
   "xcx": "xdx",
   "xex": "xfx"
 "xhx":"xix":"xkx":"xlx":"xmx":"xnx":
 "xpx":"xqx";"xrx";"xsx":"xtx":"xvx":
 "xwx":"xyx":},
 "string": ""
}’’’
Import json
Import numpy as np
With open (‘training-data-10k.json’) as f:
Data = json.load (f)
Xs = np.array (data [‘ys’])
YS = np.array (data[‘ys’])
X – train = xs[-10]
Y-train= ys [: -10]
x-train = xs[: -10]
x-test= xs [:-10]
y-test = ys[:-10]
open training data as g:
open(‘training_data -10k.jason’) as g: