Dear Christopher,
Can you offer some guidance here?
In OxCal V4.1 Interface build 46 the help file on Outlier analysis notes that SSimple closely follows the model of Christen 1994 i.e.
Outlier_Model("SSimple",N(0,2),0,"s").
This is applied to the Chancay culture dates with the addition of a Fake value of 1400+/-70 to illustrate the outlier analysis and includes late date of 1550 AD. The outlier analysis shifts this Fake date from a prior of 0.1 to a posterior of .39. I have tried to simulate the Christen analysis as follows (SSimple below):
with the following in broad agreement with Christen’s result. ‘Dum’ is the Fake date and is flagged as poor individual agreement of 34% and A model 72%. Posterior probability of ‘Dum’ as an outlier shifts from 10% to 50%
However, Christen also notes that the 13 Chancay determinations on table 1 are all from Charcoal samples (page 493).
If I then repeat the analysis but use the Charcoal outlier model as below (the Charcoal model):
This gives Amodel of 99% and the ‘Dum’ fake an individual agreement of 65%, which, without the knowledge that it was a fake determination, would not suggest it was an outlier.
My take on this is that the 1400+/-70 fake determination is not an outlier when we consider that the other 13 determinations are from charcoal and hence could be residual, but that the 1400+/-70 would be an outlier had the other 13 determinations been non-charcoal.
Treating the 13 determinations simply as a non charcoal phase with ‘Dum’ an outlier (question) gives it a 1% probability of it belonging to the phase.
Was the Fake determination an unfortunate illustration given the circumstances?
Regards Ray Kidd
The SSimple Model
Plot()
{
Outlier_Model("SSimple",N(0,2),0,"s");
Sequence()
{
Boundary("Start 1");
Phase("1")
{
R_Date("Dum", 1400, 70)
{
Outlier("SSimple", .1);
};
R_Date("Gd5824", 1140, 50)
{
Outlier("SSimple", .1);
};
R_Date("Gd6189", 1070, 60)
{
Outlier("SSimple", .1);
};
R_Date("Gd5310", 1000, 50)
{
Outlier("SSimple", .1);
};
R_Date("Gd5307", 970, 50)
{
Outlier("SSimple", .1);
};
R_Date("Gd5309", 910, 35)
{
Outlier("SSimple", .1);
};
R_Date("Gd6197", 900, 70)
{
Outlier("SSimple", .1);
};
R_Date("Gd5672", 830, 50)
{
Outlier("SSimple", .1);
};
R_Date("Gd6196", 810, 70)
{
Outlier("SSimple", .1);
};
R_Date("Gd5823", 670, 40)
{
Outlier("SSimple", .1);
};
R_Date("Gd2818", 520, 60)
{
Outlier("SSimple", .1);
};
R_Date("Gd5304", 460, 50)
{
Outlier("SSimple", .1);
};
R_Date("Gd3396", 430, 30)
{
Outlier("SSimple", .1);
};
R_Date("Gd5312", 390, 45)
{
Outlier("SSimple", .1);
};
};
Boundary("End 1");
Date("T_1550", 1550);
};
};
The Charcoal model
Plot()
{
Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t");
Sequence()
{
Boundary("Start 1");
Phase("1")
{
R_Date("Dum", 1400, 70)
{
Outlier(" Charcoal", 1);
};
R_Date("Gd5824", 1140, 50)
{
Outlier(" Charcoal", 1);
};
R_Date("Gd6189", 1070, 60)
{
Outlier(" Charcoal", 1);
};
R_Date("Gd5310", 1000, 50)
{
Outlier(" Charcoal", 1);
};
R_Date("Gd5307", 970, 50)
{
Outlier(" Charcoal", 1);
};
R_Date("Gd5309", 910, 35)
{
Outlier(" Charcoal", 1);
};
R_Date("Gd6197", 900, 70)
{
Outlier(" Charcoal", 1);
};
R_Date("Gd5672", 830, 50)
{
Outlier(" Charcoal", 1);
};
R_Date("Gd6196", 810, 70)
{
Outlier(" Charcoal", 1);
};
R_Date("Gd5823", 670, 40)
{
Outlier(" Charcoal", 1);
};
R_Date("Gd2818", 520, 60)
{
Outlier(" Charcoal", 1);
};
R_Date("Gd5304", 460, 50)
{
Outlier(" Charcoal", 1);
};
R_Date("Gd3396", 430, 30)
{
Outlier(" Charcoal", 1);
};
R_Date("Gd5312", 390, 45)
{
Outlier(" Charcoal", 1);
};
};
Boundary("End 1");
Date("T1550", 1550);
};
};