Dear OxCal community
I’ve been struggling with this problem for several weeks now and I’m hoping that someone might be able to assist.
I have two sediment sequences, each with their own age model. The sediment sequences have a common volcanic ash layer. I’d like to extract the probability density function of a volcanic ash layer depth from each age model.
To do this, I simply add these 4 lines at the appropriate place in the code:
Date("Volcanic ash")
{
z=130;
};
In part, this works as intended, and allows me to extract the probability density function at depth 130.
However, when I compare the age model before and after I added this short piece of code, the age model looks different, and I believe that they are more different than would be expected due to the Bayesian process.
As an example, in one of the sediment sequences, I’m interested in looking at the probability density function from 5 volcanic ash layer depths. When the code to extract the pdf from 5 depths is added, this changes the agreement index of the model substantially (from over 100 to around 10). It seems that the short piece of code above is somehow changing the model. Should it do this? Is there an alternative way of extracting the probability density function at a specific depth?
I’m happy to share the code, but the age models take a while to run. I created a test age model (shorter, less dates) to try to recreate the problem, but the difference was far less pronounced.
Any help gratefully received.
All the best
Zoë Thomas
Dear Christopher
Thank you for your thoughtful response. I do see what you mean. However, I'm still quite surprised because the age model has quite a lot of dates (relatively speaking: 31 dates for 500cm). Note that these are not visible volcanic ash layers but cryptotephra, so I’m not expecting the sedimentation rate to change significantly, if at all. Essentially, I’d rather the age model didn’t change because I’d like to know how that particular depth is constrained by the radiocarbon age model surrounding it.
I have attached screenshots showing the plot vs. depth and have appended the code (with and without the ‘depth’ command). I have selected 3 volcanic ash layers to demonstrate (called H2, MB1, R1).
The agreement index (overall) for WITHOUT volcanic ash depth is 112.
The agreement index (overall) for WITH volcanic ash depth is 6.8.
I wondered about forcing it to think that it’s an outlier (and make up an age) but I don’t think that will give me the posterior probability distribution.
I’m stumped!
Many thanks for your help
Zoë
Code 1 (Without volcanic ash depths):
Options()
{
Curve="ShCal20.14c";
};
Plot()
{
Outlier_Model("General",T(5),U(0,4),"t");
P_Sequence("HP20",2,2,U(-2,2))
{
Boundary();
R_Date("Beta-193403",13630,140)
{
Outlier(0.05);
z=468;
};
Combine("HP20 29cm and Beta-241338")
{
Outlier("General", 0.05);
z=454.5;
R_Date("HP20 29cm", 13330,63);
R_Date("Beta-241338", 13320,50);
};
R_Date("HP20 19cm",12875,90)
{
Outlier("General", 0.05);
z=444.5;
};
R_Date("HP20 15cm",12393,72)
{
Outlier("General", 0.05);
z=440.5;
};
R_Date("HP20 12cm",12372,84)
{
Outlier("General", 0.05);
z=437.5;
};
R_Date("UBA-42351",11838,47)
{
color="red";
Outlier();
z=436;
};
R_Date("HP20 8cm",12213,69)
{
Outlier("General", 0.05);
z=433.5;
};
R_Date("HP20 4cm",12160,72)
{
Outlier("General", 0.05);
z=429.5;
};
R_Date("UBA-43463",11738,75)
{
Outlier(0.05);
z=427.5;
};
Combine("HP20 1cm")
{
Outlier("General", 0.05);
z=426.5;
R_Date("HP20 1cm", 11779,81);
R_Date("HP20 1cm", 11755,81);
};
R_Date("Beta-193402",10370,60)
{
Outlier(0.05);
z=400;
};
R_Date("Beta-241336",9940,40)
{
Outlier(0.05);
z=394.5;
};
R_Date("Beta-241335",10030,40)
{
Outlier(0.05);
z=390.5;
};
R_Date("Beta-193401",9250,80)
{
Outlier(0.05);
z=376;
};
R_Date("UBA-42350",8498,36)
{
Outlier(0.05);
z=369;
};
R_Date("UBA-43462",7587,38)
{
Outlier(0.05);
z=355;
};
R_Date("Beta-241334",7390,40)
{
Outlier(0.05);
z=342.5;
};
R_Date("UBA-42349",5796,29)
{
color="red";
Outlier();
z=338;
};
R_Date("UBA-42348",5953,29)
{
color="red";
Outlier();
z=335;
};
R_Date("UBA-43461",6029,37)
{
Outlier(0.05);
z=318;
};
R_Date("Beta-193400",5700,40)
{
Outlier(0.05);
z=301;
};
R_Date("UNSW-1197",4825,20)
{
Outlier(0.05);
z=285;
};
R_Date("UNSW-1196",4508,20)
{
Outlier(0.05);
z=260;
};
R_Date("UNSW-1195",4192,20)
{
Outlier(0.05);
z=243;
};
R_Date("UNSW-1194",3770,20)
{
Outlier(0.05);
z=220;
};
R_Date("UNSW-1193",3489,20)
{
Outlier(0.05);
z=197;
};
R_Date("UNSW-1192",2751,20)
{
Outlier(0.05);
z=149;
};
R_Date("UNSW-1191",1928,20)
{
Outlier(0.05);
z=95;
};
R_Date("UNSW-1190",1254,20)
{
Outlier(0.05);
z=65;
};
R_Date("UNSW-1189",1019,20)
{
Outlier(0.05);
z=55;
};
R_Date("UNSW-1188",444,20)
{
Outlier(0.05);
z=32;
};
Date("Top",N(2005))
{
z=0;
};
Boundary();
};
};
Code 2: (with volcanic ash depths):
Options()
{
Curve="ShCal20.14c";
};
Plot()
{
Outlier_Model("General",T(5),U(0,4),"t");
P_Sequence("HP20",2,2,U(-2,2))
{
Boundary();
R_Date("Beta-193403",13630,140)
{
Outlier(0.05);
z=468;
};
Combine("HP20 29cm and Beta-241338")
{
Outlier("General", 0.05);
z=454.5;
R_Date("HP20 29cm", 13330,63);
R_Date("Beta-241338", 13320,50);
};
R_Date("HP20 19cm",12875,90)
{
Outlier("General", 0.05);
z=444.5;
};
R_Date("HP20 15cm",12393,72)
{
Outlier("General", 0.05);
z=440.5;
};
R_Date("HP20 12cm",12372,84)
{
Outlier("General", 0.05);
z=437.5;
};
Date("HP20 - R1")
{
z=437.5;
};
R_Date("UBA-42351",11838,47)
{
color="red";
Outlier();
z=436;
};
R_Date("HP20 8cm",12213,69)
{
Outlier("General", 0.05);
z=433.5;
};
R_Date("HP20 4cm",12160,72)
{
Outlier("General", 0.05);
z=429.5;
};
R_Date("UBA-43463",11738,75)
{
Outlier(0.05);
z=427.5;
};
Combine("HP20 1cm")
{
Outlier("General", 0.05);
z=426.5;
R_Date("HP20 1cm", 11779,81);
R_Date("HP20 1cm", 11755,81);
};
R_Date("Beta-193402",10370,60)
{
Outlier(0.05);
z=400;
};
R_Date("Beta-241336",9940,40)
{
Outlier(0.05);
z=394.5;
};
R_Date("Beta-241335",10030,40)
{
Outlier(0.05);
z=390.5;
};
R_Date("Beta-193401",9250,80)
{
Outlier(0.05);
z=376;
};
R_Date("UBA-42350",8498,36)
{
Outlier(0.05);
z=369;
};
Date("HP05 - MB1")
{
z=367.5;
};
R_Date("UBA-43462",7587,38)
{
Outlier(0.05);
z=355;
};
R_Date("Beta-241334",7390,40)
{
Outlier(0.05);
z=342.5;
};
R_Date("UBA-42349",5796,29)
{
color="red";
Outlier();
z=338;
};
R_Date("UBA-42348",5953,29)
{
color="red";
Outlier();
z=335;
};
R_Date("UBA-43461",6029,37)
{
Outlier(0.05);
z=318;
};
R_Date("Beta-193400",5700,40)
{
Outlier(0.05);
z=301;
};
R_Date("UNSW-1197",4825,20)
{
Outlier(0.05);
z=285;
};
R_Date("UNSW-1196",4508,20)
{
Outlier(0.05);
z=260;
};
R_Date("UNSW-1195",4192,20)
{
Outlier(0.05);
z=243;
};
R_Date("UNSW-1194",3770,20)
{
Outlier(0.05);
z=220;
};
Date("HP05 - H2")
{
z=213.5;
};
R_Date("UNSW-1193",3489,20)
{
Outlier(0.05);
z=197;
};
R_Date("UNSW-1192",2751,20)
{
Outlier(0.05);
z=149;
};
R_Date("UNSW-1191",1928,20)
{
Outlier(0.05);
z=95;
};
R_Date("UNSW-1190",1254,20)
{
Outlier(0.05);
z=65;
};
R_Date("UNSW-1189",1019,20)
{
Outlier(0.05);
z=55;
};
R_Date("UNSW-1188",444,20)
{
Outlier(0.05);
z=32;
};
Date("Top",N(2005))
{
z=0;
};
Boundary();
};
};