When the GLOP presolver is turned off, PDLP is solving the problem.
$ solve --solver=pdlp --logtostderr --linear_solver_enable_verbose_output --input=input.mps --params="termination_criteria{eps_optimal_relative:1e-3}, presolve_options{use_glop:false}" --num_threads=24
I0207 09:13:37.567702 186946 solve.cc:150] Read input proto as an MPModelProto.
File : 'input.mps'
I0207 09:13:37.578476 186946 solve.cc:181] Set number of threads to 24.
Solver : PDLP_LINEAR_PROGRAMMING
Dimension : 47261300 x 47251695
I0207 09:16:01.121251 186946 primal_dual_hybrid_gradient.cc:1858] Problem stats before rescaling:
I0207 09:16:01.125003 186946 primal_dual_hybrid_gradient.cc:1298] There are 47251695 variables, 47261300 constraints, and 141744517 constraint matrix nonzeros.
I0207 09:16:01.125011 186946 primal_dual_hybrid_gradient.cc:1304] Absolute values of nonzero constraint matrix elements: largest=1.000000, smallest=1.000000, avg=1.000000
I0207 09:16:01.125023 186946 primal_dual_hybrid_gradient.cc:1309] Constraint matrix, infinity norm: max(row & col)=1.000000, min_col=1.000000, min_row=1.000000
I0207 09:16:01.125028 186946 primal_dual_hybrid_gradient.cc:1314] Constraint bounds statistics (max absolute value per row): largest=10.000000, smallest=1.000000, avg=0.000315, l2_norm=122.425488
I0207 09:16:01.125032 186946 primal_dual_hybrid_gradient.cc:1331] Absolute values of objective vector elements: largest=12800.000000, smallest=20.000000, avg=3561.474902, l2_norm=30055161.602451
I0207 09:16:01.125036 186946 primal_dual_hybrid_gradient.cc:1338] Gaps between variable upper and lower bounds: #finite=47251695 of 47251695, largest=1.000000, smallest=1.000000, avg=1.000000
I0207 09:16:02.928667 186946 primal_dual_hybrid_gradient.cc:1927] Problem stats after rescaling:
I0207 09:16:02.928694 186946 primal_dual_hybrid_gradient.cc:1298] There are 47251695 variables, 47261300 constraints, and 141744517 constraint matrix nonzeros.
I0207 09:16:02.928700 186946 primal_dual_hybrid_gradient.cc:1304] Absolute values of nonzero constraint matrix elements: largest=0.840896, smallest=0.010618, avg=0.300228
I0207 09:16:02.928707 186946 primal_dual_hybrid_gradient.cc:1309] Constraint matrix, infinity norm: max(row & col)=0.840896, min_col=0.076125, min_row=0.025097
I0207 09:16:02.928711 186946 primal_dual_hybrid_gradient.cc:1314] Constraint bounds statistics (max absolute value per row): largest=1.172895, smallest=0.117290, avg=0.000045, l2_norm=18.228729
I0207 09:16:02.928715 186946 primal_dual_hybrid_gradient.cc:1331] Absolute values of objective vector elements: largest=10763.474115, smallest=16.817928, avg=2994.831478, l2_norm=25273277.651371
I0207 09:16:02.928718 186946 primal_dual_hybrid_gradient.cc:1338] Gaps between variable upper and lower bounds: #finite=47251695 of 47251695, largest=11.046289, smallest=1.189207, avg=1.190133
iter# kkt_pass time | rel_prim_res rel_dual_res rel_gap | prim_resid dual_resid obj_gap | prim_obj dual_obj | prim_var_l2 dual_var_l2
0 0.0 1.9 | 0.998790 0.00000 0.00000 | 122.278 0.00000 0.00000 | 0.00000 0.00000 | 1.41421 0.00000
64 70.0 55.8 | 0.0280624 0.618417 -0.253533 | 3.43558 1.85866e+07 -2.02184e+07 | 2.97642e+07 4.99826e+07 | 6.22323 1.26147e+07
128 139.0 92.8 | 0.0160167 0.0536887 -0.0107858 | 1.96086 1.61362e+06 -654584. | 3.00175e+07 3.06721e+07 | 7.23091 1.21464e+07
192 208.0 129.8 | 0.00668027 0.0184950 -0.0133601 | 0.817842 555872. -829742. | 3.06381e+07 3.14679e+07 | 8.01165 1.11868e+07
256 275.0 162.4 | 0.00400867 0.0129691 -0.00605125 | 0.490767 389790. -375009. | 3.07986e+07 3.11736e+07 | 8.25760 1.10829e+07
320 342.0 198.7 | 0.00263937 0.0101943 0.00568137 | 0.323129 306393. 351557. | 3.11153e+07 3.07637e+07 | 9.11567 1.10669e+07
384 409.0 231.4 | 0.00336836 0.00784146 0.00508904 | 0.412376 235676. 315286. | 3.11346e+07 3.08193e+07 | 9.38245 1.10504e+07
448 477.0 264.5 | 0.00384927 0.00711738 0.00657943 | 0.471253 213914. 406885. | 3.11244e+07 3.07175e+07 | 9.65453 1.10236e+07
512 544.0 297.4 | 0.00416169 0.00653913 0.00755084 | 0.509501 196535. 466019. | 3.10918e+07 3.06258e+07 | 9.89131 1.09921e+07
576 610.0 333.6 | 0.00507244 0.00568525 0.00967830 | 0.621001 170871. 590991. | 3.08272e+07 3.02363e+07 | 11.2322 1.08502e+07
640 676.0 366.3 | 0.00493565 0.00507531 0.00942726 | 0.604254 152539. 573869. | 3.07236e+07 3.01497e+07 | 11.5011 1.08227e+07
704 742.0 398.8 | 0.00475720 0.00468064 0.00900656 | 0.582407 140677. 546691. | 3.06229e+07 3.00762e+07 | 11.7567 1.07966e+07
768 808.0 431.3 | 0.00455310 0.00445373 0.00820788 | 0.557419 133858. 496964. | 3.05220e+07 3.00251e+07 | 11.9973 1.07714e+07
832 874.0 463.8 | 0.00432830 0.00430867 0.00728883 | 0.529898 129498. 440274. | 3.04221e+07 2.99818e+07 | 12.2291 1.07479e+07
896 939.0 497.2 | 0.00290021 0.00375786 0.00196999 | 0.355062 112943. 117263. | 2.98211e+07 2.97038e+07 | 13.7708 1.06364e+07
iter# kkt_pass time | rel_prim_res rel_dual_res rel_gap | prim_resid dual_resid obj_gap | prim_obj dual_obj | prim_var_l2 dual_var_l2
960 1004.0 529.3 | 0.00262924 0.00353591 0.000869503 | 0.321888 106272. 51639.9 | 2.97209e+07 2.96692e+07 | 14.0495 1.06248e+07
1024 1068.0 562.2 | 0.00192380 0.00296895 -0.00158507 | 0.235524 89232.2 -93436.9 | 2.94274e+07 2.95208e+07 | 15.0478 1.06000e+07
1088 1133.0 594.4 | 0.00173793 0.00277025 -0.00202687 | 0.212769 83260.2 -119184. | 2.93415e+07 2.94607e+07 | 15.4405 1.05952e+07
1152 1198.0 626.6 | 0.00159988 0.00265910 -0.00231884 | 0.195867 79919.8 -136055. | 2.92690e+07 2.94051e+07 | 15.8226 1.05910e+07
1216 1264.0 659.3 | 0.00150470 0.00248462 -0.00262411 | 0.184216 74675.8 -153703. | 2.92098e+07 2.93635e+07 | 16.1956 1.05871e+07
1280 1329.0 692.7 | 0.00143892 0.00211410 -0.00474291 | 0.176162 63539.5 -275809. | 2.89380e+07 2.92138e+07 | 18.2309 1.05725e+07
1344 1394.0 725.0 | 0.00145242 0.00198114 -0.00476626 | 0.177814 59543.4 -276837. | 2.89029e+07 2.91797e+07 | 18.8052 1.05704e+07
1408 1460.0 757.7 | 0.00141101 0.00188438 -0.00476242 | 0.172745 56635.3 -276316. | 2.88719e+07 2.91482e+07 | 19.3431 1.05680e+07
1472 1526.0 790.6 | 0.00142003 0.00182156 -0.00485047 | 0.173849 54747.4 -281183. | 2.88445e+07 2.91257e+07 | 19.8766 1.05653e+07
1536 1590.0 822.6 | 0.00146611 0.00176715 -0.00484904 | 0.179490 53111.9 -280867. | 2.88207e+07 2.91016e+07 | 20.3720 1.05626e+07
1600 1656.0 855.4 | 0.00152361 0.00171531 -0.00474580 | 0.186530 51553.9 -274636. | 2.87973e+07 2.90719e+07 | 20.8793 1.05597e+07
1664 1721.0 888.0 | 0.00157459 0.00167162 -0.00471112 | 0.192772 50240.9 -272414. | 2.87756e+07 2.90480e+07 | 21.3559 1.05569e+07
1728 1787.0 920.8 | 0.00162125 0.00163333 -0.00479021 | 0.198484 49090.0 -276798. | 2.87537e+07 2.90305e+07 | 21.8406 1.05541e+07
1792 1852.0 953.3 | 0.00166127 0.00160652 -0.00485793 | 0.203383 48284.1 -280516. | 2.87317e+07 2.90122e+07 | 22.3126 1.05513e+07
1856 1918.0 987.2 | 0.00179957 0.00163835 -0.00576537 | 0.220315 49240.9 -332571. | 2.86759e+07 2.90084e+07 | 23.4478 1.05502e+07
iter# kkt_pass time | rel_prim_res rel_dual_res rel_gap | prim_resid dual_resid obj_gap | prim_obj dual_obj | prim_var_l2 dual_var_l2
1920 1983.0 1019.8 | 0.00201262 0.00150792 -0.00541294 | 0.246399 45320.9 -311831. | 2.86482e+07 2.89601e+07 | 24.4289 1.05489e+07
1984 2048.0 1052.8 | 0.00217206 0.00142667 -0.00494481 | 0.265917 42878.7 -284495. | 2.86248e+07 2.89093e+07 | 25.3764 1.05474e+07
2048 2113.0 1085.6 | 0.00229857 0.00136409 -0.00423993 | 0.281406 40998.1 -243566. | 2.86010e+07 2.88446e+07 | 26.2823 1.05458e+07
2112 2177.0 1117.9 | 0.00241215 0.00130823 -0.00344102 | 0.295311 39319.0 -197366. | 2.85797e+07 2.87771e+07 | 27.1466 1.05442e+07
2176 2241.0 1150.3 | 0.00252043 0.00124513 -0.00161565 | 0.308567 37422.7 -92430.4 | 2.85585e+07 2.86510e+07 | 27.9985 1.05425e+07
2240 2305.0 1182.8 | 0.00262269 0.00118832 -0.000464597 | 0.321086 35715.2 -26530.1 | 2.85385e+07 2.85650e+07 | 28.8337 1.05407e+07
2304 2371.0 1216.0 | 0.00271645 0.00114950 0.000266402 | 0.332565 34548.4 15190.7 | 2.85184e+07 2.85032e+07 | 29.6446 1.05389e+07
2368 2436.0 1248.7 | 0.00281238 0.00110998 0.000938904 | 0.344310 33360.7 53461.8 | 2.84970e+07 2.84436e+07 | 30.5092 1.05369e+07
2432 2502.0 1283.1 | 0.00313395 0.00104309 0.00445495 | 0.383678 31350.1 252344. | 2.84479e+07 2.81955e+07 | 32.5592 1.05361e+07
2496 2568.0 1316.3 | 0.00374818 0.000890457 0.00800549 | 0.458876 26762.8 451508. | 2.84256e+07 2.79741e+07 | 34.4600 1.05352e+07
2560 2634.0 1349.4 | 0.00416604 0.000829613 0.00921991 | 0.510034 24934.2 518918. | 2.84006e+07 2.78817e+07 | 36.2645 1.05341e+07
2624 2699.0 1381.9 | 0.00462079 0.000781113 0.00999460 | 0.565707 23476.5 561673. | 2.83797e+07 2.78180e+07 | 37.8992 1.05329e+07
2688 2765.0 1415.3 | 0.00502777 0.000744529 0.0105881 | 0.615532 22376.9 594292. | 2.83612e+07 2.77669e+07 | 39.4438 1.05316e+07