>> optiprv1
OPTI Derivative Checker detected no problems in 'Objective Gradient'
OPTI Derivative Checker detected no problems in 'Constraint Jacobian'
OPTI Derivative Checker detected no problems in 'Hessian of the Lagrangian'
------------------------------------------------------
Nonlinear Program (NLP) Optimization
min f(x)
s.t. rl <= Ax <= ru
lb <= x <= ub
cl <= c(x) <= cu
------------------------------------------------------
Problem Properties:
# Decision Variables: 23
# Constraints: 70
# Linear Equality: 8
# Bounds: 46
# Nonlinear Inequality: 16
------------------------------------------------------
Solver Parameters:
Solver: IPOPT
Objective Gradient: gradient
Constraint Jacobian: @(x) ...
Jacobian Structure: Supplied
Lagrangian Hessian: @(x) ...
Hessian Structure: Supplied
------------------------------------------------------
This is Ipopt version 3.12.9, running with linear solver ma57.
Number of nonzeros in equality constraint Jacobian...: 24
Number of nonzeros in inequality constraint Jacobian.: 56
Number of nonzeros in Lagrangian Hessian.............: 31
Total number of variables............................: 23
variables with only lower bounds: 0
variables with lower and upper bounds: 23
variables with only upper bounds: 0
Total number of equality constraints.................: 8
Total number of inequality constraints...............: 16
inequality constraints with only lower bounds: 16
inequality constraints with lower and upper bounds: 0
inequality constraints with only upper bounds: 0
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
0 2.7851032e-01 1.18e+02 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0
Reallocating memory for MA57: lfact (746)
*** Error using Ipopt Matlab interface: ***
The constraints must return a real, dense, double precision vector.
Exception of type: IpoptException in file "Unknown File" at line -1:
Exception message: Unknown Exception caught in Ipopt