Bài tập về nhà

27 views
Skip to first unread message

Huy Nguyen Viet

unread,
Nov 22, 2011, 11:22:29 AM11/22/11
to olymp...@googlegroups.com

Các em giải bài này nhé, mấu chốt của nó là đếm số 0 của N! với N có thể lên đến 1 tỷ.

FACTORIAL


The most important part of a GSM network is so called Base Transceiver Station (BTS). These transceivers form the areas called cells (this term gave the name to the cellular phone) and every phone connects to the BTS with the strongest signal (in a little simplified view). Of course, BTSes need some attention and technicians need to check their function periodically.

The technicians faced a very interesting problem recently. Given a set of BTSes to visit, they needed to find the shortest path to visit all of the given points and return back to the central company building. Programmers have spent several months studying this problem but with no results. They were unable to find the solution fast enough. After a long time, one of the programmers found this problem in a conference article. Unfortunately, he found that the problem is so called "Traveling Salesman Problem" and it is very hard to solve. If we have N BTSes to be visited, we can visit them in any order, giving us N! possibilities to examine. The function expressing that number is called factorial and can be computed as a product 1.2.3.4....N. The number is very high even for a relatively small N.

The programmers understood they had no chance to solve the problem. But because they have already received the research grant from the government, they needed to continue with their studies and produce at least some results. So they started to study behavior of the factorial function.

For example, they defined the function Z. For any positive integer NZ(N) is the number of zeros at the end of the decimal form of number N!. They noticed that this function never decreases. If we have two numbers N1<N2, then Z(N1) <= Z(N2). It is because we can never "lose" any trailing zero by multiplying by any positive number. We can only get new and new zeros. The function Z is very interesting, so we need a computer program that can determine its value efficiently.

 

Input

There is a single positive integer T on the first line of input (equal to about 100000). It stands for the number of numbers to follow. Then there are T lines, each containing exactly one positive integer number N, 1 <= N <= 1000000000.

 

Output

For every number N, output a single line containing the single non-negative integer Z(N).

Example

Sample Input:

6
3
60
100
1024
23456
8735373

Sample Output:

0
14
24
253
5861
2183837

Huy Nguyen Viet

unread,
Nov 22, 2011, 10:55:28 PM11/22/11
to olymp...@googlegroups.com
Đã có bạn Bùi Văn Lực giải đúng bài này !

Vào 23:22 Ngày 22 tháng 11 năm 2011, Huy Nguyen Viet <huyhu...@gmail.com> đã viết:



--

Nguyễn Viết Huy

Trung Tâm Tin Học

Đại học Kinh doanh và Công nghệ Hà Nội

Phone: 0978948311, Email: huyhu...@gmail.com


Huy Nguyen Viet

unread,
Nov 25, 2011, 11:11:55 AM11/25/11
to olymp...@googlegroups.com
Mới có bạn Hùng, Triển và Lực giải đúng bài này ! Các em khác cố lên nhé !


Vào 10:55 Ngày 23 tháng 11 năm 2011, Huy Nguyen Viet <huyhu...@gmail.com> đã viết:

Huy Nguyen Viet

unread,
Nov 25, 2011, 10:21:28 PM11/25/11
to olymp...@googlegroups.com
Thêm bạn Nguyễn Minh Đức giải được bài này : Cho đến nay có Đức, Hùng, Triển, Lực giải đúng chạy được test max .


Vào 23:11 Ngày 25 tháng 11 năm 2011, Huy Nguyen Viet <huyhu...@gmail.com> đã viết:
Reply all
Reply to author
Forward
0 new messages