CDFT / ET calculation

89 views
Skip to first unread message

Jakub

unread,
Apr 26, 2022, 5:55:03 PM4/26/22
to NWChem Forum
Hi all,
I'm trying to perform a coupling calculation using the ET module using an output of CDFT calculations. I'm interested in a triplet-triplet transfer between two anthracenes.
The first step is to find the localised triplet states using CDFT. And while the first cdft calculation (with the triplet localised on the 'donor') works fine, the second one (which should be equivalent) fails with the "CDFT: multipliers go over limit " error.  The input is attached below. Any idea how to fix this? Thanks!
(I'm using NWChem 7.0.0) 

___________________________
echo

MEMORY STACK 1500 mb HEAP 150 mb GLOBAL 1800 mb noverify

start anthracene

title "Title"
charge 0

geometry da units angstroms print xyz
   C        8.46805      -15.49835       -0.29888
   C        7.04311      -15.49835       -0.29888
   C        6.35033      -14.31954       -0.29888
   C        7.03407      -13.06458       -0.29888
   C        9.16082      -14.31954       -0.29888
   C        8.47709      -13.06458       -0.29888
   C        6.35354      -11.84255       -0.29888
   C        7.03407      -10.62051       -0.29888
   C        9.15761      -11.84255       -0.29888
   C        8.47709      -10.62051       -0.29888
   C        6.35033       -9.36556       -0.29888
   C        7.04311       -8.18674       -0.29888
   C        8.46805       -8.18674       -0.29888
   C        9.16082       -9.36556       -0.29888
   H        9.00052      -16.44262       -0.29888
   H        6.51064      -16.44262       -0.29888
   H        5.26534      -14.31901       -0.29888
   H       10.24582      -14.31901       -0.29888
   H        5.26769      -11.84255       -0.29888
   H       10.24346      -11.84255       -0.29888
   H        5.26534       -9.36609       -0.29888
   H        6.51064       -7.24247       -0.29888
   H        9.00052       -7.24247       -0.29888
   H       10.24582       -9.36609       -0.29888
   C        4.42418      -14.27653       10.00050
   C        5.82796      -14.23446        9.75913
   C        3.69581      -13.12073       10.05538
   H        7.53318      -13.00523        9.39555
   H        3.93654      -15.23450       10.14070
   H        2.53260      -10.68106       10.10755
   H        2.62694      -13.15226       10.23913
   H        2.43372       -8.20999        9.97674
   H        7.33996       -8.06296        9.13316
   H        7.43430      -10.53417        9.26474
   H        6.03036       -5.98073        9.23159
   H        6.38927      -15.16100        9.71898
   H        3.57763       -6.05423        9.65331
   C        5.74188      -11.80567        9.62867
   C        3.60233      -10.64900        9.92362
   C        6.46436      -13.03776        9.57935
   C        4.32037      -11.84826        9.87309
   C        6.27109       -8.09450        9.31691
   C        5.54272       -6.93870        9.37179
   C        4.13894       -6.98077        9.61316
   C        4.22502       -9.40956        9.74362
   C        6.36457      -10.56622        9.44867
   C        5.64653       -9.36696        9.49920
   C        3.50254       -8.17746        9.79294
end

basis
  * library 6-31G*
end

#----------------------------------------------------------------------------------
set geometry da
charge 0

dft  
  direct
  mult 3
  odft
  XC b3lyp
  maxiter 500
  cdft 1 24 charge 0
  cdft 1 24 spin 2
  cdft 25 48 charge 0
  cdft 25 48 spin 0
  vectors output reactant.movecs
  convergence nolevelshifting
end

set dft:cdft_maxiter 1000

task dft

#----------------------------------------------------------------------------------
set geometry da
charge 0

dft  
  direct
  mult 3
  odft
  XC b3lyp
  maxiter 500
  cdft 1 24 charge 0
  cdft 1 24 spin 0
  cdft 25 48 charge 0
  cdft 25 48 spin 2
  vectors output product.movecs
  convergence nolevelshifting
end

set dft:cdft_maxiter 1000

task dft

#----------------------------------------------------------------------------------
charge 0
set geometry da

scf
  uhf
  singlet
  vectors input reactant.movecs output reactant-scf.movecs
  direct
  noscf
end

task scf
#----------------------------------------------------------------------------------
charge 0
set geometry da

scf
  uhf
  triplet
  vectors input product.movecs output product-scf.movecs
  direct
  noscf
end

task scf

#-----------------------------------------------------------------------------------
set geometry da
charge 0

et
  vectors reactants reactant-scf.movecs
  vectors products product-scf.movecs
end

task scf et

Edoardo Aprà

unread,
Apr 27, 2022, 12:43:24 PM4/27/22
to NWChem Forum
This input gets you the localized triplet states you mention without using CDFT. It uses the fragment guess https://nwchemgit.github.io/Hartree-Fock-Theory-for-Molecules.html#vectors-fragment-superposition-of-fragment-molecular-orbitals. The only tricky part is to choose a level lshifter value that converges to the desired localized triplet. I have empirically found that decreasing the level shifter value from the default 0.5 to 0.17 gets the desired solution. You can monitor the localization of the spin by examining the Spin Density Mulliken analysis.

geometry a1 units angstroms print xyz

   C        8.46805      -15.49835       -0.29888
   C        7.04311      -15.49835       -0.29888
   C        6.35033      -14.31954       -0.29888
   C        7.03407      -13.06458       -0.29888
   C        9.16082      -14.31954       -0.29888
   C        8.47709      -13.06458       -0.29888
   C        6.35354      -11.84255       -0.29888
   C        7.03407      -10.62051       -0.29888
   C        9.15761      -11.84255       -0.29888
   C        8.47709      -10.62051       -0.29888
   C        6.35033       -9.36556       -0.29888
   C        7.04311       -8.18674       -0.29888
   C        8.46805       -8.18674       -0.29888
   C        9.16082       -9.36556       -0.29888
   H        9.00052      -16.44262       -0.29888
   H        6.51064      -16.44262       -0.29888
   H        5.26534      -14.31901       -0.29888
   H       10.24582      -14.31901       -0.29888
   H        5.26769      -11.84255       -0.29888
   H       10.24346      -11.84255       -0.29888
   H        5.26534       -9.36609       -0.29888
   H        6.51064       -7.24247       -0.29888
   H        9.00052       -7.24247       -0.29888
   H       10.24582       -9.36609       -0.29888
end
geometry a2 units angstroms print xyz
basis spherical

  * library 6-31G*
end

#----------------------------------------------------------------------------------
set geometry a1
charge 0

dft
  sym off
  adapt off
  mulliken
  direct
  mult 1
  odft
  XC b3lyp
   vectors input atomic output a1_singlet.mos
end

task dft


dft
  direct
  mult 3
  odft
  XC b3lyp
   vectors input a1_singlet.mos output a1_triplet.mos
end

task dft
set geometry a2
charge 0

dft
  direct
  mult 1
  odft
  XC b3lyp
   vectors input atomic output a2_singlet.mos
end

task dft


dft
  direct
  mult 3
  odft
  XC b3lyp
   vectors input a2_singlet output a2_triplet.mos
end

task dft

set geometry da

title "triplet on monomer 1"
dft
 vectors input fragment a1_triplet.mos a2_singlet.mos output triplet_singlet.mos
 convergence lshift 0.17
 max_ovl

end

task dft

title "triplet on monomer 2"
dft
 vectors input fragment a1_singlet.mos a2_triplet.mos output singlet_triplet.mos
end

task dft

Reply all
Reply to author
Forward
0 new messages