Abs Hips

0 views
Skip to first unread message

Edward

unread,
Aug 5, 2024, 4:21:44 AM8/5/24
to ntesmeverlo
Lieface down, though you might want to turn your head to one side if this is more comfortable. Tighten your stomach and buttock muscles to lift one leg slightly off the floor, while keeping your hips flat on the ground. Hold this position for 5 to 10 seconds and repeat 3 times.

Sit with your knees bent and feet together. Press your knees down towards the floor using your hands as needed. Alternatively, lie on your back and part your knees, keeping your feet together. Take the movement up to the point you feel a stretch, hold for around 10 seconds and relax. Repeat 5-10 times.


Move your leg backwards, keeping your knee straight. Clench your buttock tightly and hold for five seconds. Don't lean forward. Repeat with the other leg. Hold on to a chair or work surface for support.


Stand with one hand resting on the back of a chair or a work surface for support. Lift your leg straight up to the side. Hold for five seconds and then slowly lower your leg. Try to keep your body straight throughout. Repeat five times on each side.


Pull your toes and ankles towards you, while keeping your leg straight and pushing your knee firmly against the floor. You should feel the tightness in the front of your leg. Hold for five seconds and relax. This exercise can be done from a sitting position as well, if you find this more comfortable.


Lie on your back. Pull each knee to your chest in turn, keeping the other leg straight. Take the movement up to the point you feel a stretch, hold for around 10 seconds and relax. Repeat 5-10 times. If this is difficult, try sliding your heel along the floor towards your bottom to begin with, and when this feels comfortable try lifting your knee as above.


The hip region is located lateral and anterior to the gluteal region, inferior to the iliac crest, and lateral to the obturator foramen, with muscle tendons and soft tissues overlying the greater trochanter of the femur.[2] In adults, the three pelvic bones (ilium, ischium and pubis) have fused into one hip bone, which forms the superomedial/deep wall of the hip region.


The hip joint, scientifically referred to as the acetabulofemoral joint (art. coxae), is the ball-and-socket joint between the pelvic acetabulum and the femoral head. Its primary function is to support the weight of the torso in both static (e.g. standing) and dynamic (e.g. walking or running) postures. The hip joints have very important roles in retaining balance, and for maintaining the pelvic inclination angle.


The hip joint, also known as a ball and socket joint, is formed by the acetabulum of the pelvis and the femoral head, which is the top portion of the thigh bone (femur). It allows for a wide range of movement and stability in the lower body.[3]


The hip joint is a ball and socket synovial joint formed by the articulation of the rounded head of the femur and the cup-like acetabulum of the pelvis.[5] The socket of the acetabulum is pointing downwards and anterolaterally. The socket is also turned such that the outer edge of its roof is more lateral than outer edge of the floor.[5] It forms the primary connection between the bones of the lower limb and the axial skeleton of the trunk and pelvis. Both joint surfaces are covered with a strong but lubricated layer called articular hyaline cartilage.


Acetabular angle (or Sharp's angle)[10] is the angle between the horizontal line passing through the inferior aspects of triradiate cartilages (Hilgenreiner's line) and another line passing through the inferior angle of triradiate cartilage to superior acetabular rim. The angle measures 35 degrees at birth, 25 degrees at one year of age, and less than 10 degrees by 15 years of age.[11] In adults the angle can vary from 33 to 38 degrees.[12]


The sagittal angle of the acetabular inlet is an angle between a line passing from the anterior to the posterior acetabular rim and the sagittal plane. It measures 7 at birth and increases to 17 in adults.[11]


Wiberg's centre-edge angle (CE angle) is an angle between a vertical line and a line from the centre of the femoral head to the most lateral part of the acetabulum,[13] as seen on an anteroposterior radiograph.[14]


The vertical-centre-anterior margin angle (VCA) is an angle formed from a vertical line (V) and a line from the centre of the femoral head (C) and the anterior (A) edge of the dense shadow of the subchondral bone slightly posterior to the anterior edge of the acetabulum, with the radiograph being taken from the false angle, that is, a lateral view rotated 25 degrees towards becoming frontal.[14]


The articular cartilage angle (AC angle, also called acetabular index[15] or Hilgenreiner angle) is an angle formed parallel to the weight bearing dome, that is, the acetabular sourcil or "roof",[16] and the horizontal plane,[13] or a line connecting the corner of the triangular cartilage and the lateral acetabular rim.[17] In normal hips in children aged between 11 and 24 months, it has been estimated to be on average 20, ranging between 18 and 25.[18] It becomes progressively lower with age.[19] Suggested cutoff values to classify the angle as abnormally increased include:


Changes in the CCD angle is the result of changes in the stress patterns applied to the hip joint. Such changes, caused for example by a dislocation, change the trabecular patterns inside the bones. Two continuous trabecular systems emerging on the auricular surface of the sacroiliac joint meander and criss-cross each other down through the hip bone, the femoral head, neck, and shaft.


On the lateral side of the hip joint the fascia lata is strengthened to form the iliotibial tract which functions as a tension band and reduces the bending loads on the proximal part of the femur.[21]


Proximally, capsule of the hip joint is attached to the edge of the acetabulum, acetabular labrum, and transverse acetabular ligament. Distally, it is attached to the trochanters of the femur and intertrochanteric line anteriorly. Posteriorly, it is attached to a junction between medial two-thirds and lateral one-third of the femoral neck,[5] one finger breadth away from the intertrochanteric crest.[22] From its attachment at the femoral neck, the fibres of the capsule reflected backwards towards the acetabulum, carrying retinacula vessels supplying the femoral head.[5] The part of femoral neck outside the capsule is shorter in front than posteriorly.[22]


The strong but loose fibrous capsule of the hip joint permits the hip joint to have the second largest range of movement (second only to the shoulder) and yet support the weight of the body, arms and head.


The extracapsular ligaments are the iliofemoral, ischiofemoral, and pubofemoral ligaments attached to the bones of the pelvis (the ilium, ischium, and pubis respectively). All three strengthen the capsule and prevent an excessive range of movement in the joint. Of these, the Y-shaped and twisted iliofemoral ligament is the strongest ligament in the human body. It has a tensile strength of 350 kg.[22] Iliofemoral ligament is a thickening of the anterior capsule extending from anterior inferior iliac spine to intertrochanteric line.[5] Ischiofemoral ligament is the thickening of posterior capsule of the hip and pubofemoral ligament is the thickening of the inferior capsule.[5] In the upright position, iliofemoral ligament prevents the trunk from falling backward without the need for muscular activity, thus preventing excessive hyperextension. In the sitting position, it becomes relaxed, thus permitting the pelvis to tilt backward into its sitting position. Ischiofemoral prevents excessive extension and the pubofemoral ligament prevents excess abduction and extension.[24]


The zona orbicularis, which lies like a collar around the most narrow part of the femoral neck, is covered by the other ligaments which partly radiate into it. The zona orbicularis acts like a buttonhole on the femoral head and assists in maintaining the contact in the joint.[22]All three ligaments become taut when the joint is extended - this stabilises the joint, and reduces the energy demand of muscles when standing.[25]


The hip joint is supplied with blood from the medial circumflex femoral and lateral circumflex femoral arteries, which are both usually branches of the deep artery of the thigh (profunda femoris), but there are numerous variations and one or both may also arise directly from the femoral artery. There is also a small contribution from the foveal artery, a small vessel in the ligament of the head of the femur which is a branch of the posterior division of the obturator artery, which becomes important to avoid avascular necrosis of the head of the femur when the blood supply from the medial and lateral circumflex arteries are disrupted (e.g. through fracture of the neck of the femur along their course).[27]


The hip has two anatomically important anastomoses, the cruciate and the trochanteric anastomoses, the latter of which provides most of the blood to the head of the femur. These anastomoses exist between the femoral artery or profunda femoris and the gluteal vessels.[28]


The hip muscles act on three mutually perpendicular main axes, all of which pass through the center of the femoral head, resulting in three degrees of freedom and three pair of principal directions: Flexion and extension around a transverse axis (left-right); lateral rotation and medial rotation around a longitudinal axis (along the thigh); and abduction and adduction around a sagittal axis (forward-backward);[29] and a combination of these movements (i.e. circumduction, a compound movement in which the leg describes the surface of an irregular cone).[22]Some of the hip muscles also act on either the vertebral joints or the knee joint, that with their extensive areas of origin and/or insertion, different part of individual muscles participate in very different movements, and that the range of movement varies with the position of the hip joint.[22]Additionally, the inferior and Superior gemelli muscles assist the obturator internus and the three muscles together form the three-headed muscle known as the triceps coxae.[30][22]

3a8082e126
Reply all
Reply to author
Forward
0 new messages