In the previous chapter, we discussed an example problem related equivalent resistance. There, we calculated the equivalent resistance between the terminals A & B of the given electrical network easily. Because, in every step, we got the combination of resistors that are connected in either series form or parallel form.
However, in some situations, it is difficult to simplify the network by following the previous approach. For example, the resistors connected in either delta (δ) form or star form. In such situations, we have to convert the network of one form to the other in order to simplify it further by using series combination or parallel combination. In this chapter, let us discuss about the Delta to Star Conversion.
The above circuit is a delta configuration. To convert the delta circuit into an equivalent star network, use these formulas. To visualize while calculating the values of star-connected resistances, use this figure.
By observing the above equations of delta conversion, we can see that the equivalent delta resistance between any two-star terminals is given by the sum of both the star resistances plus the product of both these resistances divided by the third-star arm resistance.
Now that we know how to simplify the star or delta connected network, we can work on the first problem in figure 1(a). The R2, R4, and R6 resistors are in the delta-connected network. If we convert that to a star network, then the resultant network will look like this.
In the example, we did a Y-Δ transformation or a delta transformation to simplify the analysis of an electrical network. Similarly, we can do delta star transformation to simplify circuits. Once we get the star equivalent circuit, we can solve that with other series or parallel circuits.
The above image shows an example of the Δ-Y connection, which means Δ in primary winding and Y in a secondary winding of the transformer. Transformers have primary and secondary three-phase windings for stepping up or stepping down the voltage.
For transmission purposes, secondary winding should be in a delta connection; while for distribution purposes, secondary winding should be in star connection. We use the star connection for distribution because we get a neutral terminal at the center of the star connection.
In DC circuits, inductors act as closed-circuit while capacitors act as open circuits. Hence, these circuits can only be explained using resistance. In AC circuits, the combined resistive effect of resistors, capacitors, and inductors makes impedance. Although both resistance and impedance are denoted by R and Z, respectively, the unit we use for both impedance and resistance is Ω.
This topic is included in the curriculum of an undergraduate degree that includes the study of basic electrical and electronics such as electrical engineering, electronics and computer engineering, electronics and communication engineering, and so on.
Explanation: Using equations 1, 2, and 3, if one transforms DAC, which is a delta configuration to star configuration, they will get one resistor in series with one parallel circuit. Solving these, one will get 1.18 Ω resistance across the battery terminals.
Is it possible to use star-to-delta transformation on this specific circuit below? If it is possible, can someone give me a hint on how to do it?I tried to do delta-to-star transformation and got the answer, but unsure with doing star-to-delta transformation on this circuit shown below. Please enlighten me on this. Thanks!
Standard 3-phase circuits or networks take on two major forms with names that represent the way in which the resistances are connected, a Star connected network which has the symbol of the letter, Υ (wye) and a Delta connected network which has the symbol of a triangle, Δ (delta).
If a 3-phase, 3-wire supply or even a 3-phase load is connected in one type of configuration, it can be easily transformed or changed it into an equivalent configuration of the other type by using either the Star Delta Transformation or Delta Star Transformation process.
Having now defined exactly what is a Star and Delta connected network it is possible to transform the Υ into an equivalent Δ circuit and also to convert a Δ into an equivalent Υ circuit using a the transformation process.
This process allows us to produce a mathematical relationship between the various resistors giving us a Star Delta Transformation as well as a Delta Star Transformation.
These circuit transformations allow us to change the three connected resistances (or impedances) by their equivalents measured between the terminals 1-2, 1-3 or 2-3 for either a star or delta connected circuit.
However, the resulting networks are only equivalent for voltages and currents external to the star or delta networks, as internally the voltages and currents are different but each network will consume the same amount of power and have the same power factor to each other.
To convert a delta network to an equivalent star network we need to derive a transformation formula for equating the various resistors to each other between the various terminals. Consider the circuit below.
When converting a delta network into a star network the denominators of all of the transformation formulas are the same: A + B + C, and which is the sum of ALL the delta resistances. Then to convert any delta connected network to an equivalent star network we can summarized the above transformation equations as:
If the three resistors in the delta network are all equal in value then the resultant resistors in the equivalent star network will be equal to one third the value of the delta resistors. This gives each resistive branch in the star network a value of: RSTAR = 1/3*RDELTA which is the same as saying: (RDELTA)/3
The transformation from a Star network to a Delta network is simply the reverse of above. We have seen that when converting from a delta network to an equivalent star network that the resistor connected to one terminal is the product of the two delta resistances connected to the same terminal, for example resistor P is the product of resistors A and B connected to terminal 1.
By rewriting the previous formulas a little we can also find the transformation formulas for converting a resistive star connected network to an equivalent delta network giving us a way of producing the required transformation as shown below.
By dividing out each equation by the value of the denominator we end up with three separate transformation formulas that can be used to convert any delta resistive network into an equivalent star network as given below.
One final point about converting a star connected resistive network into an equivalent delta connected network. If all the resistors in the star network are all equal in value then the resultant resistors in the equivalent delta network will be three times the value of the star resistors and equal, giving: RDELTA = 3*RSTAR
Both Star Delta Transformation and Delta Star Transformation allows us to convert one type of circuit connection into another type in order for us to easily analyse the circuit. These transformation techniques can be used to good effect for either star or delta circuits containing resistances or impedances.
In this book, the three-phase ac systems are considered as a balanced circuit, made up of a balanced three-phase source, a balanced line, and a balanced three-phase load. Therefore, a balanced system can be studied using only one-third of the system, which can be analyzed on a line to neutral basis.
The star-delta (Y-Δ) or delta-star (Δ-Y) conversion (Fig. 3-15) is required in three-phase ac systems to simplify the circuits and ease their analysis. If a three-phase supply or a three-phase load is connected in delta, it can be transformed into an equivalent star-connected supply or load. After the analysis, the results are converted back into their original delta equivalent.
Since the load is balanced, the impedance per phase of the star-connected load will be one-third of the impedance per phase of the delta-connected load. Hence the equivalent impedances can be given by
One of the common uses of these transformations is in power system transmission line modeling and in three-phase transformer analysis. Circuit analysis involving three-phase transformers under balanced conditions can be performed on a per-phase basis. When Δ-Y or Y-Δ connections are present, the parameters refer to the Y side. In Δ-Δ connections, the Δ-connected impedances are converted to equivalent Y-connected impedances.
The objective of the following VI is to study these transformation concepts and provide an easy calculation tool using the complex impedances. The front panel of Star Delta Transformations.vi is given in Fig. 3-16 and is capable of transforming balanced or unbalanced three-phase impedance loads.
The circuit shown in Fig. 3-17 is called an unbalanced Wheatstone Bridge. Find the equivalent resistance between terminals A and D, which then can be used to calculate the source current for a given supply voltage.
This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.
For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.
For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.
c80f0f1006