Subject: | [SoCinfo] PhD position in real-time hardware design at Technical University of Denmark (DTU) |
---|---|
Date: | Thu, 17 Aug 2017 13:50:11 +0200 |
From: | Martin Schoeberl <mar...@jopdesign.com> |
To: | soc...@cs.tut.fi <soc...@cs.tut.fi> |
Dear all, I have a PhD position open here at DTU. If you know a good student who finished his master or will finish in the fall semester, it would be nice if you could forward this offer to him. Thanks, Martin PhD project: Open source Fog Node: hardware support for virtualization Apply no later than 1 October 2017 Apply online at: http://www.dtu.dk/english/career/job?id=004f9d3f-ec93-4f1f-926e-01c96d923602 Host: Technical University of Denmark (DTU), Embedded Systems Engineering (ESE) section. Main supervisor: Prof. Martin Schoeberl, ma...@dtu.dk (contact person) Co-supervisor: Prof. Jens Sparsø, js...@dtu.dk Requirements: Master’s in Computer Science or equivalent Objectives: Develop and evaluate time-predictable hardware mechanisms to support virtualization, such as time-predictable virtual memory and time-predictable virtualization of I/O Develop an open source implementation of a Fog Node hardware, with these virtualization mechanisms Expected Results: Open-source prototype implementation of a Fog Node (FN) hardware, extending the T-CREST platform based on PATMOS processors Time-predictable virtualization of I/O devices and services Physical virtualization through manycore processors power down and up Segment based memory protection with time-predictable address translation Cache partitioning to remove cache related preemption delays Integration and evaluation of these hardware support mechanisms into PikeOS. Planned visits and collaboration: SYSGO (Dr. Henrik Theiling): Explore hardware needs for virtualization; Port PikeOS to developed FN. Description: Current multicore processors support virtualization that is optimized for average case performance. Techniques such as paging and address translation caching with a TLB are hardly time-predictable. Within this PhD project time-predictable hardware mechanism will be developed to support virtualization. The project will extend the T-CREST platform. Relevant publications: Martin Schoeberl, Sahar Abbaspour, Benny Akesson, Neil Audsley, Raffaele Capasso, Jamie Garside, Kees Goossens, Sven Goossens, Scott Hansen, Reinhold Heckmann, Stefan Hepp, Benedikt Huber, Alexander Jordan, Evangelia Kasapaki, Jens Knoop, Yonghui Li, Daniel Prokesch, Wolfgang Puffitsch, Peter Puschner, Andre Rocha, Claudio Silva, Jens Sparso, and Alessandro Tocchi. T-CREST: Time-predictable multi-core architecture for embedded systems. Journal of Systems Architecture, 61(9):449-471, 2015. _______________________________________________ SoCinfo mailing list SoC...@listmail.tut.fi https://listmail.tut.fi/mailman/listinfo/socinfo (to unsubscribe or edit options)