Restmass, also called invariant mass, is a fundamental physical property that is independent of momentum, even at extreme speeds approaching the speed of light. Its value is the same in all inertial frames of reference. Massless particles such as photons have zero invariant mass, but massless free particles have both momentum and energy.
The equivalence principle implies that when mass is lost in chemical reactions or nuclear reactions, a corresponding amount of energy will be released. The energy can be released to the environment (outside of the system being considered) as radiant energy, such as light, or as thermal energy. The principle is fundamental to many fields of physics, including nuclear and particle physics.
In relativity, all the energy that moves with an object (i.e., the energy as measured in the object's rest frame) contributes to the total mass of the body, which measures how much it resists acceleration. If an isolated box of ideal mirrors could contain light, the individually massless photons would contribute to the total mass of the box by the amount equal to their energy divided by c2.[7] For an observer in the rest frame, removing energy is the same as removing mass and the formula m = E/c2 indicates how much mass is lost when energy is removed.[8] In the same way, when any energy is added to an isolated system, the increase in the mass is equal to the added energy divided by c2.[9]
An object moves at different speeds in different frames of reference, depending on the motion of the observer. This implies the kinetic energy, in both Newtonian mechanics and relativity, is 'frame dependent', so that the amount of relativistic energy that an object is measured to have depends on the observer. The relativistic mass of an object is given by the relativistic energy divided by c2.[10] Because the relativistic mass is exactly proportional to the relativistic energy, relativistic mass and relativistic energy are nearly synonymous; the only difference between them is the units. The rest mass or invariant mass of an object is defined as the mass an object has in its rest frame, when it is not moving with respect to the observer. Physicists typically use the term mass, though experiments have shown an object's gravitational mass depends on its total energy and not just its rest mass.[citation needed] The rest mass is the same for all inertial frames, as it is independent of the motion of the observer, it is the smallest possible value of the relativistic mass of the object. Because of the attraction between components of a system, which results in potential energy, the rest mass is almost never additive; in general, the mass of an object is not the sum of the masses of its parts.[9] The rest mass of an object is the total energy of all the parts, including kinetic energy, as observed from the center of momentum frame, and potential energy. The masses add up only if the constituents are at rest (as observed from the center of momentum frame) and do not attract or repel, so that they do not have any extra kinetic or potential energy.[note 1] Massless particles are particles with no rest mass, and therefore have no intrinsic energy; their energy is due only to their momentum.
Relativistic mass depends on the motion of the object, so that different observers in relative motion see different values for it. The relativistic mass of a moving object is larger than the relativistic mass of an object at rest, because a moving object has kinetic energy. If the object moves slowly, the relativistic mass is nearly equal to the rest mass and both are nearly equal to the classical inertial mass (as it appears in Newton's laws of motion). If the object moves quickly, the relativistic mass is greater than the rest mass by an amount equal to the mass associated with the kinetic energy of the object. Massless particles also have relativistic mass derived from their kinetic energy, equal to their relativistic energy divided by c2, or mrel = E/c2.[11][12] The speed of light is one in a system where length and time are measured in natural units and the relativistic mass and energy would be equal in value and dimension. As it is just another name for the energy, the use of the term relativistic mass is redundant and physicists generally reserve mass to refer to rest mass, or invariant mass, as opposed to relativistic mass.[13][14] A consequence of this terminology is that the mass is not conserved in special relativity, whereas the conservation of momentum and conservation of energy are both fundamental laws.[13]
The Conservation of energy is a universal principle in physics and holds for any interaction, along with the conservation of momentum.[13] The classical conservation of mass, in contrast, is violated in certain relativistic settings.[14][13] This concept has been experimentally proven in a number of ways, including the conversion of mass into kinetic energy in nuclear reactions and other interactions between elementary particles.[14] While modern physics has discarded the expression 'conservation of mass', in older terminology a relativistic mass can also be defined to be equivalent to the energy of a moving system, allowing for a conservation of relativistic mass.[13] Mass conservation breaks down when the energy associated with the mass of a particle is converted into other forms of energy, such as kinetic energy, thermal energy, or radiant energy.[13]
For closed systems made up of many parts, like an atomic nucleus, planet, or star, the relativistic energy is given by the sum of the relativistic energies of each of the parts, because energies are additive in these systems. If a system is bound by attractive forces, and the energy gained in excess of the work done is removed from the system, then mass is lost with this removed energy. The mass of an atomic nucleus is less than the total mass of the protons and neutrons that make it up.[15] This mass decrease is also equivalent to the energy required to break up the nucleus into individual protons and neutrons. This effect can be understood by looking at the potential energy of the individual components. The individual particles have a force attracting them together, and forcing them apart increases the potential energy of the particles in the same way that lifting an object up on earth does. This energy is equal to the work required to split the particles apart. The mass of the Solar System is slightly less than the sum of its individual masses.
For an isolated system of particles moving in different directions, the invariant mass of the system is the analog of the rest mass, and is the same for all observers, even those in relative motion. It is defined as the total energy (divided by c2) in the center of momentum frame. The center of momentum frame is defined so that the system has zero total momentum; the term center of mass frame is also sometimes used, where the center of mass frame is a special case of the center of momentum frame where the center of mass is put at the origin. A simple example of an object with moving parts but zero total momentum is a container of gas. In this case, the mass of the container is given by its total energy (including the kinetic energy of the gas molecules), since the system's total energy and invariant mass are the same in any reference frame where the momentum is zero, and such a reference frame is also the only frame in which the object can be weighed. In a similar way, the theory of special relativity posits that the thermal energy in all objects, including solids, contributes to their total masses, even though this energy is present as the kinetic and potential energies of the atoms in the object, and it (in a similar way to the gas) is not seen in the rest masses of the atoms that make up the object.[9] Similarly, even photons, if trapped in an isolated container, would contribute their energy to the mass of the container. Such extra mass, in theory, could be weighed in the same way as any other type of rest mass, even though individually photons have no rest mass. The property that trapped energy in any form adds weighable mass to systems that have no net momentum is one of the consequences of relativity. It has no counterpart in classical Newtonian physics, where energy never exhibits weighable mass.[9]
In some reactions, matter particles can be destroyed and their associated energy released to the environment as other forms of energy, such as light and heat.[1] One example of such a conversion takes place in elementary particle interactions, where the rest energy is transformed into kinetic energy.[1] Such conversions between types of energy happen in nuclear weapons, in which the protons and neutrons in atomic nuclei lose a small fraction of their original mass, though the mass lost is not due to the destruction of any smaller constituents. Nuclear fission allows a tiny fraction of the energy associated with the mass to be converted into usable energy such as radiation; in the decay of the uranium, for instance, about 0.1% of the mass of the original atom is lost.[19] In theory, it should be possible to destroy matter and convert all of the rest-energy associated with matter into heat and light, but none of the theoretically known methods are practical. One way to harness all the energy associated with mass is to annihilate matter with antimatter. Antimatter is rare in our universe, however, and the known mechanisms of production require more usable energy than would be released in annihilation. CERN estimated in 2011 that over a billion times more energy is required to make and store antimatter than could be released in its annihilation.[20]
As most of the mass which comprises ordinary objects resides in protons and neutrons, converting all the energy of ordinary matter into more useful forms requires that the protons and neutrons be converted to lighter particles, or particles with no mass at all. In the Standard Model of particle physics, the number of protons plus neutrons is nearly exactly conserved. Despite this, Gerard 't Hooft showed that there is a process that converts protons and neutrons to antielectrons and neutrinos.[21] This is the weak SU(2) instanton proposed by the physicists Alexander Belavin, Alexander Markovich Polyakov, Albert Schwarz, and Yu. S. Tyupkin.[22] This process, can in principle destroy matter and convert all the energy of matter into neutrinos and usable energy, but it is normally extraordinarily slow. It was later shown that the process occurs rapidly at extremely high temperatures that would only have been reached shortly after the Big Bang.[23]
3a8082e126