dcar_leroux <- nimbleFunction(
    name = 'dcar_leroux',
    run = function(x = double(1),        # Spatial random effect (vector)
                 rho = double(0),      # Amount of spatial dependence (scalar)
                 sd.theta = double(0), # Standard deviation (scalar)
                 Lambda = double(1),   # Eigenvalues of matrix D - W                 
from.to = double(2),  # Matrix of distinct pairs of neighbors 
from.to[, 1] < 
from.to[, 2]
                 log = integer(0, default = 0)) {
      #returnType(double(0))
      # Number of small areas
      NMuni <- dim(x)[1]
      # Number of distinct pairs of neighbors
      NDist <- dim(
from.to)[1]
      # Required vectors
      x.from <- nimNumeric(NDist)      
x.to <- nimNumeric(NDist)
      for (Dist in 1:NDist) {
        x.from[Dist] <- x[
from.to[Dist, 1]]        
x.to[Dist] <- x[
from.to[Dist, 2]]
      }    
      logDens <- sum(dnorm(x[1:NMuni], mean = 0, sd = sd.theta * pow(1 - rho, -1/2), log = TRUE)) -
        NMuni/2 * log(1 - rho) +  sum(log(rho * (Lambda[1:NMuni] - 1) + 1))/2 -
        pow(sd.theta, -2) * rho * sum(pow(x.from[1:NDist] - 
x.to[1:NDist], 2))/2
      if(log) return(logDens)
      else return(exp(logDens))
      returnType(double())
    },
    buildDerivs= list(run = list(ignore = 'Dist'))
  )
  rcar_leroux <- nimbleFunction(
    name = 'rcar_leroux',
    run = function(n = integer(0),
                   rho = double(0),
                   sd.theta = double(0),
                   Lambda = double(1),                   
from.to = double(2)) {
      returnType(double(1))
      nimStop("user-defined distribution dcar_leroux provided without random generation function.")
      x <- nimNumeric(length(Lambda))
      return(x)
    }
  )
  assign('dcar_leroux', dcar_leroux, envir = .GlobalEnv)
  assign('rcar_leroux', rcar_leroux, envir = .GlobalEnv)
It seems as if the parameterTransform function, which is called by buildMCMC, does not consider the case of having this, or any, user-defined distribution. Can this be solved in some way?
I do not attach any reproducible case study since the model that I am working on is quite intrincated and hardly illustrative of the problem mentioned. However, if necessary, I could build a simpler version of the model for illustrative purposes.
Thanks in advance.