Course on `Dark matter physics and micrOMEGAs' by Prof Sasha Pukhov

21 views
Skip to first unread message

Stefano Moretti

unread,
Feb 25, 2016, 4:16:51 PM2/25/16
to next-phd-lectures

Our Diamond Jubilee International Visiting Fellow Dr. Alexander Pukhov from Moscow State University will be delivering a four hours PhD course, starting next week, on Dark matter physics and micrOMEGAs.

 

Lectures will take place in the VCR and planned schedule is:

 

Monday 29th Feb. 10 - 12

Wednesday 2nd March 10 - 12

Thursday 3rd March  2:30 - 4:30 (possible extension)

 

You will find schedule and details of the lectures at https://sites.google.com/site/nextphd/next-phd-schedule.

 

Students are advised to bring their laptops to follow up the practical introduction to the relic density calculation, expecially for the first lecture.

 

Here below is the content of the course.

 

 

"Dark Matter observables in micrOMEGAs package."

 

 

1)    Calculation of relic density

           a)    theoretical formulas

           b)    co-annihilation

           c)    thermodynamics of Universe

           d)    starting point of differential equation

           e)    frees-out

           f)     asymmetric  DM

           g)    main channels responsible for relic

           i)     examples in micrOMEGAs

           j)     Other scenario,  freeze-in,    inflation decay

 

2)      Direct  detection

           a)    Spin-independent and spin-dependent cross sections

           a)    Effective operators

           b)    Decomposition of scattering amplitudes

           c)    Loop corrections

           d)    Nuclear affects

           f)    Xenon experiment

 

3)       Indirect detection -- Solar neutrinos

           a)   capture of DM by Sun

           b)   annihilation of captured DM particle and neutrino production

           c)   neutrino propagation

           d)   neutrino   CC interactions   in rocks/ice

           f)    SuperK and IceCube experiments

 

 

4) Practical Introduction to micrOMEGAs

 

     a)   General principles of ME evaluation

           --  matrix elements by CalcHEP

           --  Shared libraries

           --  particles masses, widths, decay rates

 

     b) installation

 

 

     c) DM Models

         --  Inert Doublet Model, Z2, micrOMEGAs session for IDM

 

         --  MSSM model:  R-parity, neutralino as a DM particle,

             micrOMEGAs session for MSSM

 

5) LanHEP and model generation.

Reply all
Reply to author
Forward
0 new messages