お世話になります。
添付(network.png)をPythonコードでエクスポートし、
Python上で推論させてみたのですが、表題のエラーが現れます。
対処方法についてご教示いただきたいです。
〇エラー内容
h = PF.convolution(h, outmaps=3, kernel=(7,7), pad=(0,0), name='Convolution')
File "<string>", line 8, in convolution
File "C:\Users\lib\site-packages\nnabla\parametric_functions.py", line 636, in convolution
return F.convolution(inp, w, b, base_axis, pad, stride, dilation, group, channel_last)
File "<convolution>", line 3, in convolution
File "C:\Users\lib\site-packages\nnabla\function_bases.py", line 342, in convolution
return F.Convolution(ctx, base_axis, pad, stride, dilation, group, channel_last)(*inputs, n_outputs=n_outputs, auto_forward=get_auto_forward(), outputs=outputs)
File "function.pyx", line 337, in nnabla.function.Function.__call__
File "function.pyx", line 315, in nnabla.function.Function._cg_call
RuntimeError: value error in nbla::Convolution<float>::setup_impl
C:\gl\builds\gCcnn6sA\0\nnabla\builders\all\nnabla\src\nbla\function\./generic/convolution.cpp:56
Failed `shape_weights.size() == 2 + spatial_dims`: Weights must be a tensor more than 3D.
〇エクスポートしたPythonコード
# NNCにより出力されたコード
def network(x, test=False):
# Input:x -> 3,30,30
# RandomShift
if not test:
h = F.random_shift(x, shifts=(4,4))
else:
h = x
# RandomFlip
if not test:
h = F.random_flip(h, axes=(3,))
# ImageAugmentation
h = F.image_augmentation(h, shape=(3,30,30), min_scale=0.9, max_scale=1.1, angle=0.3, aspect_ratio=1.3, distortion=0.1, brightness=0.5, brightness_each=True, contrast=1.5, contrast_each=True, noise=0.1, seed=0)
# Convolution -> 3,24,24
h = PF.convolution(h, outmaps=3, kernel=(7,7), pad=(0,0), name='Convolution')
# ReLU
h = F.relu(h, inplace=True)
# MaxPooling -> 3,12,12
h = F.max_pooling(h, kernel=(2,2), stride=(2,2))
# Convolution_2 -> 3,10,10
h = PF.convolution(h, outmaps=3, kernel=(7,7), pad=(0,0), name='Convolution_2')
# MaxPooling_2 -> 3,5,5
h = F.max_pooling(h, kernel=(2,2), stride=(2,2))
# Tanh_2
h = F.tanh(h)
# Affine -> 5
h = PF.affine(h, n_outmaps=(5,), name='Affine')
# ReLU_2
h = F.relu(h, inplace=True)
# Affine_2 -> 1
h = PF.affine(h, n_outmaps=(1,), name='Affine_2')
# Sigmoid
h = F.sigmoid(h)
return h
どうぞよろしくお願いいたします。