[Anti Deep Ze 7.22.0203453

0 views
Skip to first unread message

Luther Lazaro

unread,
Jun 13, 2024, 12:10:51 AM6/13/24
to neronapo

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Anti deep ze 7.22.0203453


DOWNLOAD === https://t.co/zmtTHxWEFR



As part of the ongoing bacterial-phage arms race, CRISPR-Cas systems in bacteria clear invading phages whereas anti-CRISPR proteins (Acrs) in phages inhibit CRISPR defenses. Known Acrs have proven extremely diverse, complicating their identification. Here, we report a deep learning algorithm for Acr identification that revealed an Acr against type VI-B CRISPR-Cas systems. The algorithm predicted numerous putative Acrs spanning almost all CRISPR-Cas types and subtypes, including over 7,000 putative type IV and VI Acrs not predicted by other algorithms. By performing a cell-free screen for Acr hits against type VI-B systems, we identified a potent inhibitor of Cas13b nucleases we named AcrVIB1. AcrVIB1 blocks Cas13b-mediated defense against a targeted plasmid and lytic phage, and its inhibitory function principally occurs upstream of ribonucleoprotein complex formation. Overall, our work helps expand the known Acr universe, aiding our understanding of the bacteria-phage arms race and the use of Acrs to control CRISPR technologies.

Motivation: As an important group of proteins discovered in phages, anti-CRISPR inhibits the activity of the immune system of bacteria (i.e. CRISPR-Cas), offering promise for gene editing and phage therapy. However, the prediction and discovery of anti-CRISPR are challenging due to their high variability and fast evolution. Existing biological studies rely on known CRISPR and anti-CRISPR pairs, which may not be practical considering the huge number. Computational methods struggle with prediction performance. To address these issues, we propose a novel deep neural network for anti-CRISPR analysis (AcrNET), which achieves significant performance.

Results: On both the cross-fold and cross-dataset validation, our method outperforms the state-of-the-art methods. Notably, AcrNET improves the prediction performance by at least 15% regarding the F1 score for the cross-dataset test problem comparing with state-of-art Deep Learning method. Moreover, AcrNET is the first computational method to predict the detailed anti-CRISPR classes, which may help illustrate the anti-CRISPR mechanism. Taking advantage of a Transformer protein language model ESM-1b, which was pre-trained on 250 million protein sequences, AcrNET overcomes the data scarcity problem. Extensive experiments and analysis suggest that the Transformer model feature, evolutionary feature, and local structure feature complement each other, which indicates the critical properties of anti-CRISPR proteins. AlphaFold prediction, further motif analysis, and docking experiments further demonstrate that AcrNET can capture the evolutionarily conserved pattern and the interaction between anti-CRISPR and the target implicitly.

Criminalizing consensual same-sex relationships and gender expression not only violates fundamental human rights but also undermines efforts to end AIDS by driving marginalized populations underground and away from essential health services, including life-saving HIV prevention, treatment and care services.

Globally, the movement for human rights has made progress in the past 40 years. At the start of the AIDS pandemic in the early 1980s, most countries criminalized same-sex sexual activity between men, now two thirds do not. An increasing number of countries have also recognized the rights of trans and other gender diverse people. However, this new legislation in Iraq represents a significant setback and is part of a wave of punitive and restrictive laws being passed that undermine the rights of LGBTQ+ people.

The legislation passed in parliament is an amendment to an existing 1988 anti-sex work law which continues to criminalize both the selling and buying of sexual services. The amendments passed on Saturday 27 April 2024 increase the penalties in relation to sex work. These laws, which countries committed to removing under the 2021 United Nations General Assembly Political Declaration on HIV and AIDS, likewise undermine the human rights and public health of sex workers.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advances in deep learning technology have enabled complex task solutions. The accuracy of image classification tasks has improved owing to the establishment of convolutional neural networks (CNN). Cellular senescence is a hallmark of ageing and is important for the pathogenesis of ageing-related diseases. Furthermore, it is a potential therapeutic target. Specific molecular markers are used to identify senescent cells. Moreover senescent cells show unique morphology, which can be identified. We develop a successful morphology-based CNN system to identify senescent cells and a quantitative scoring system to evaluate the state of endothelial cells by senescence probability output from pre-trained CNN optimised for the classification of cellular senescence, Deep Learning-Based Senescence Scoring System by Morphology (Deep-SeSMo). Deep-SeSMo correctly evaluates the effects of well-known anti-senescent reagents. We screen for drugs that control cellular senescence using a kinase inhibitor library by Deep-SeSMo-based drug screening and identify four anti-senescent drugs. RNA sequence analysis reveals that these compounds commonly suppress senescent phenotypes through inhibition of the inflammatory response pathway. Thus, morphology-based CNN system can be a powerful tool for anti-senescent drug screening.

Advances in deep learning technology have enabled complex task solutions1. The accuracy of image classification has increased rapidly owing to the development of convolutional neural networks (CNNs)2,3. CNNs have been applied to broad medical research fields4, and image classification is employed as a diagnostic tool in the clinic5. In the biological field, cell morphology images obtained by phase-contrast microscopy contain numerous biological data such as cellular identity and status, which are currently evaluated by molecular biology techniques. A morphology-based identification system using CNN can replace the molecular biology techniques in some tasks and be applicable to various research areas. We previously developed a label-free system to identify endothelial cells among various cell types derived from induced pluripotent stem cells by phase-contrast microscopy images using a CNN6. Many reports demonstrate the high potential of CNNs in a classification or identification task. Versatile biologic systems should construct quantitative and not just qualitative classifications7. CNNs are a potential tool to develop non-biased quantitative evaluation systems.

Endothelial cells serve many functions in homoeostasis and diseases. Cellular senescence plays an important role in age-related diseases. Endothelial cells are pivotally involved in the pathology of age-related diseases through cellular senescence. Endogenous and exogenous stresses such as reactive oxygen species (ROS), telomere dysfunction, DNA damage, inflammatory cytokines, and drugs such as anti-cancer drugs, induce cellular senescence8. Senescent cells show an inflammatory phenotype called senescence-associated secretory phenotype (SASP) and contribute to age-related disease progression9. Cellular senescence is considered a potential therapeutic target for age-related diseases10,11. Thus, drugs that directly intervene in endothelial cell senescence may represent a therapeutic option. Specific biological markers are commonly used for cellular senescence screening such as senescence-associated beta galactosidase (SA-β-gal), P16, and P21. Cellular senescence can also be defined by specific morphology such as flat and enlarged cell bodies and heterochromatin aggregation12. Despite this, the unbiased quantitative evaluation of those morphological changes for a large number of cells is difficult in using conventional methods. A scoring system that can quantitatively assess the cellular state could be an important tool for drug screening.

In this study, we developed a robust, morphology-based CNN system to identify senescent cells. Additionally, we established an automated, non-bias quantitative scoring system to evaluate the state of endothelial cells using senescence probability output directly from pre-trained CNN, Deep Learning-Based Senescence Scoring System by Morphology (Deep-SeSMo) (Supplementary Fig. 1a). Deep-SeSMo-based drug screening using a kinase inhibitor library was used to identify anti-senescent drugs.

Moreover, we examined whether the CNN can be applied to datasets obtained at another institution, Kyoto University. HUVECs were cultured and phase-contrast images were acquired at Kyoto University. The CNN was successfully trained on both the Keio (our institution) and Kyoto datasets with high performance (Supplementary Fig. 5a, b). We tested the performance of the CNN on Kyoto datasets, which were not used for training, and found that the CNN trained on the datasets from both institutes have a higher performance (Supplementary Fig. 5c). Importantly, the CNN also has a high performance with the Keio datasets, which suggests that the CNN trained on datasets from both institutes has higher generalisability. We also examined whether the CNN could classify senescence in other cell types. We used human diploid fibroblasts (HDFs), induced cellular senescence by H2O2 or CPT, cropped input datasets at single-cell resolution levels, and trained the CNN to classify them (Supplementary Fig. 5d). The CNN was successfully trained (Supplementary Fig. 5e), and had a high performance in the test datasets (Supplementary Fig. 5f). Interestingly, the CNN trained on HUVEC-datasets was also able to classify healthy and senescent HDFs (Supplementary Fig. 5g). These results suggest that cellular senescence shows a unique morphologic characteristic, and a morphology-based CNN system can reliably identify senescent cells.

795a8134c1
Reply all
Reply to author
Forward
0 new messages