21 Summary BD CBA reagents are available in two formats BD CBA kits: preconfigured panels of 7 analytes BD CBA flex sets: mix and match, up to 30 analytes Flex sets also available in Enhanced Sensitivity format Assay range: 274 to 200,000 fg/ml Compatibility with BD FACS brand flow cytometers New FCAP Array v3.0 analysis software with intuitive workflow and enhanced features
Fluorescent Array Imaging Reader Multiplex Enabled For 2-Color Fluorescent Microarrays Extended Dynamic Range Automated Spot Analysis Compact and Affordable Microarray Analysis With FLAIR FLAIR Sensovation
Type 2 diabetes mellitus (DM2) is strongly associated with other comorbidities such as obesity, atherosclerosis, and hypertension. Obesity is associated with sustained low-grade inflammatory response due to the production of proinflammatory cytokines. This inflammatory process promotes the differentiation of some myeloid cells, including myeloid-derived suppressor cells (MDSCs). In this study, two groups of individuals were included: DM2 patients and non-DM2 individuals with similar characteristics. Immunolabeling of CD15+ CD14- and CD33+ HLA-DR-/low was performed from whole peripheral blood, and samples were analyzed by flow cytometry, and frequencies of MDSCs and the relationship of these with clinical variables, cytokine profile (measured by cytometric bead array), and anthropometric variables were analyzed. The frequency of CD33+ HLA-DR-/low MDSCs (that produce IL-10 and TGF-β, according to an intracellular detection) is higher in patients with DM2 (), and there is a positive correlation between the frequency of CD15+ CD14- and CD33+ HLA-DR-/low MDSC phenotypes. DM2 patients have an increased concentration of serum IL-5 (). Also, a negative correlation between the frequency of CD15+ CD14- MDSCs and LDL cholesterol was found. Our group of DM2 patients have an increased frequency of mononuclear MDSC CD33+ HLA-DR-/low that produce TGF-β and IL-10. These cytokines have been associated with immune modulation and reduced T cell responses. DM2 and non-DM2 subjects show a similar cytokine profile, but the DM2 patients have an increased concentration of IL-5.
Several reports suggest an association of increased frequencies of MDSCs and overproduction of inflammatory cytokines. Due to the elevation of the frequencies in the CD33+ HLA-DR-/low MDSCs in the diabetic group, we wondered whether this increased frequency of CD33+ HLA-DR-/low MDSCs could be related to cytokine overproduction. Therefore, several proinflammatory cytokines such as IL-1α, TNF-α, IFN-γ, IL-5, IL-12p70, and IL-17 and one anti-inflammatory IL-10 were quantified by cytometric bead array and analyzed through FCAP Array. The concentrations were classified for groups and compared between groups. Only significant differences were found in the comparison of IL-5 (); the other cytokines did not show any significant differences (Table 2). To corroborate, a correlation analysis was made between the concentrations of the cytokines and the frequencies of CD33+ HLA-DR-/low MDSCs. No correlation between these parameters was found () (Supplementary Table 1). Finally, the same correlation analysis was made; considering only the DM2 group, no significant correlations were identified either (Supplementary Table 2).
Antibodies are a vital part of the adaptive immune system. However, some antibodies, called natural autoantibodies, recognize self-antigens. These autoantibodies include primarily low affinity IgM isotypes produced spontaneously in healthy individuals during the process of B-1 cell development, and high affinity IgG isotypes generated through a process called affinity maturation9,10,11. Studies of autoantibodies in AD show that IgG-positive neurons are abundant in AD brains and that brain-reactive autoantibodies are present in the sera of AD patients12. In addition, a previous study identified AD-related autoantibodies targeting Aβ, tau protein and glia markers9. Another study based on a protein microarray consisting of 9,486 human protein antigens suggests that plasma IgG may be a diagnostic biomarker for AD13. Thus, studies of antibodies from AD patients show an association between AD pathology and the humoral immune system. However, these studies focused on the antibody-mediated recognition of whole proteins. Recent studies attempted to identify disease-specific antibodies in order to increase the disease specificity of biomarkers; these studies screened antibodies targeting peptide epitopes rather than proteins14,15. The data suggest that more effective biomarkers, which cannot be detected by screening for whole proteins, may be identified by screening for peptide epitopes. Other related studies have been undertaken in the AD field. One study used high-throughput screening of 4,608 octameric peptoids to identify AD-specific IgG antibodies. The study used an unbiased approach based on peptoids. However, a peptoid library cannot possibly mimic native peptide antigens presented to the immune system in vivo16. Thus, the use of peptoids has disadvantages with respect to target identification. Another study used a microarray comprising 10,000 random-sequence 20-mer peptides. However, this analysis did not include results for a set of target protein properties and only provides IgG class antibody profiles against only 10,000 peptide probes relevant to AD17,18.
Here, we used a high-throughput screening technique based on a random peptide microarray to screen for antibodies targeting random peptides. This technique has been used in several studies to examine humoral immune responses associated with development of pathological processes related to specific diseases, and for identification of new biomarkers for cancer, myalgic encephalomyelitis and valley fever19,20,21. We identified up- and downregulation of IgG and IgM antibodies in AD plasma that target specific peptide epitopes. Furthermore, we identified several interesting features of these antibodies. Differentially regulated IgG antibodies were derived from pre-existing IgM-secreting cells, likely through class switching. Several of the target proteins identified based on selected epitopes are known to be associated with AD. In addition, we found that the antibody profiles can be used to identify AD-related pathways. Thus, we have identified peptide biomarkers that may be useful as biomarkers for AD diagnosis and provide clues to the mechanisms underlying AD pathology.
Although the blood-borne antibodies have been studied as potential novel plasma markers of AD, most studies have focused on antibodies specific for AD-associated proteins such as Aβ, tau protein and glia markers9. A previous study that screened for AD-specific antibodies used human proteins13. In that study, around 9,000 proteins were used to profile IgG antibodies; the selected antibodies detected AD and AD-associated mild cognitive impairment patients. However, protein structures can be altered during storage and assay. Thus, peptides may have advantages over proteins with respect to standardization of diagnostic assays and increasing probe numbers. Besides, peptide screening may identify hidden epitopes associated with disease pathology that cannot be detected by protein screening methods14,15. Here, we used a peptide microarray with 29,240 random peptides to identify antibody-binding epitopes associated with AD. In addition to IgG isotype antibodies, we also examined IgM isotypes, thereby enabling identification of antibody class switching in AD.
When you receive this error after fetching data from the database then it means that the database didn't found any matching rows. Most database fetching functions return either null or an empty array when there are no matching records or when the result set has been exhausted.
760c119bf3