Hello,Here I met two problems: Q1 and Q2
Q1: ori = orientation('Miller',[h k l],[u v w],cs,ss);
------------------------------
% win7, matlab R2010a, mtex3.3.1
clear;
cs=symmetry('cubic');
ori1=orientation('Miller',[1 0 0],[0 1 1],cs);
------------------------------
% result
oril= crystal symmetry: cubic; sample symmetry : triclinic
Bunge Euler angles in degree
phi1 Phi phi2
45 0 0
------------------------------
To my understanding, ori1 is to rotating [100]||[100],and [010]||[011],respectively. but, if rot=rotation('euler',45*degree,0,0), rotating the crystal coordinates to [100]||[110], [010]||[-110], and [001]||[110], respectively.
The calculated results cannot match, so what is wrong here?
Q2:
here what I want to get is the smallest misorientation angle of two orientation. I found that there were something wrong here!
If I only change the orientation of g1,there would be a different smallest angles. In fact,if the rotation matrix donot change which means that the misorientations are equivalent,so there should be the same smallest misorientation angle through different g1.
So, anthing wrong here?
--------------------------------------------------
% in window7, matlab R2010a, mtex3.3.1
clear;
cs=symmetry('m-3m'); % cubic crystal
l1=Miller(1,1,1,cs,'uvw'); % [111] crystal direction
rot=rotation('axis',l1,'angle',180*degree); % rotating around axis [111] by 180 degree
g1=orientation('euler',10*degree,20*degree,40*degree,cs);
g2=rot*g1; % g1 rotates around [111] by 180 degree
a=angle(g1,g2)/degree;
--------------------------------------------------
output: a = 45.4308 % in degree --------------------------------------------------