Units when measuring grain parameters / m-index

523 views
Skip to first unread message

Filippe Ferreira

unread,
Mar 5, 2014, 11:04:01 PM3/5/14
to
Hello, everyone. First of all thanks for all  the developers of MTEX. It is such a great tool with infinite possibilities.
Actually, i have two questions:

1-By measuring grain parameteres such as area, for example:
{
%% Grain-size Analysis
% Lets go back to the grain size and analyze its distribution. TO this end
% we consider the complete data set.

mtexdata forsterite
grains = calcGrains(ebsd)

%%
% and compute the vector of grain areas

ar = grains.area;

%%
% The following script compute the distribution of grain areas within the
% data set.

% define the binning of the areas
bins = linspace(0,max(ar)+eps,15);

% find for each area the binId
[tmp,binId] = histc(ar,bins);

% compute the sum of areas belonging to the same bin
cumArea = zeros(1,numel(bins)-1);
for i = 1:numel(bins)-1
  cumArea(i) = sum(ar(binId == i)) ./ sum(ar);
end

% plot the result as a bar plot
binCenter = 0.5*(bins(1:end-1)+bins(2:end));
bar(binCenter,cumArea,'BarWidth',1)
xlim([bins(1),bins(end)])
xlabel('Grain Area')
ylabel('relative volume') } The x axis gives values in pixels, right? Is there a possibility that this value could be arranged accordingly with the step size for EBSD data, giving the results in µm², for example?  2-Does MTEX computes M-index(Skemer 2005)? Thanks!

David Mainprice

unread,
Mar 7, 2014, 2:23:30 AM3/7/14
to mtex...@googlegroups.com
The units used by MTEX for the EBSD map will be the same as used for grains. For Oxford/HKL data it is in microns, for other sources of EBSD data you should check the scale used.

You can calculate the equivalent to the Skemer M-index
%**************************************************************************
% Misorientation angle distribution for a uniform distribution
%**************************************************************************
% misorientation symmetry for the crystal symmetry of your data
CS_Orthorhombic = symmetry(‘mmm');
[density_uniform,~] = angleDistribution(CS_Orthorhombic);
density_uniform = density_uniform/sum(density_uniform);
% uncorrelated mdf from odf
mdf = calcMDF(odf);
%**************************************************************************
% Misoreintation angle distribution of a misorientation distribution function
%**************************************************************************
[density_MDF,~] = calcAngleDistribution(mdf,'resolution',1*degree);
density_MDF = density_MDF/sum(density_MDF);
% M index
M_index = (sum((abs(density_MDF-density_uniform))/2));

all the best David

ylabel('relative volume') } The x axis gives values in pixels, right? Is there a possibility that this value could be arranged accordingly with the step size for EBSD data, giving the results in um^2, for example?  2-Does MTEX computates M-index(Skemer 2005)? Thanks!

--
If you want to reduce the number of emails you get through this forum login to https://groups.google.com/forum/?fromgroups=#!forum/mtexmail, click "My membership" and select "Don't send me email updates". You can still get emails on selected topics by staring them.
---
You received this message because you are subscribed to the Google Groups "MTEX" group.
To unsubscribe from this group and stop receiving emails from it, send an email to mtexmail+u...@googlegroups.com.
Visit this group at http://groups.google.com/group/mtexmail.
For more options, visit https://groups.google.com/groups/opt_out.

David Mainprice
15 Les Romarins
34270 Les Matelles

(In France 04 67 67 03 30)

Filippe Ferreira

unread,
Mar 7, 2014, 11:56:41 AM3/7/14
to mtex...@googlegroups.com

Thanks very much for the help, Mr. Mainprice. I made a comparison of the values of different texture indices i.e. entropy,J and M index, with and without calculating the psi function for optimal kernel function, as follows:
 
With kernel estimation: 
grains = calcGrains(ebsd)
psi
= calcKernel(grains('Hematite'))
odf
= calcODF(ebsd('Hematite'),'kernel',psi)

CS_Trigonal
= symmetry('-3m');
[density_uniform,~] = angleDistribution(CS_Trigonal);
density_uniform
= density_uniform/sum(density_uniform);
mdf
= calcMDF(odf);


[density_MDF,~] = calcAngleDistribution(mdf,'resolution',1*degree);

density_MDF
= density_MDF/sum(density_MDF);

M_index
= (sum((abs(density_MDF-density_uniform))/2));

M_index
textureindex
(odf)
s
= real(entropy(odf))



Without kernel estimation:

odf = calcODF(ebsd('Hematite'))
CS_Trigonal = symmetry('-3m');
[density_uniform,~] = angleDistribution(CS_Trigonal);
density_uniform = density_uniform/sum(density_uniform);
mdf = calcMDF(odf);
[density_MDF,~] = calcAngleDistribution(mdf,'resolution',1*degree);
density_MDF = density_MDF/sum(density_MDF);
M_index = (sum((abs(density_MDF-density_uniform))/2));
M_index
textureindex(odf)
s = real(entropy(odf))

giving the results (with kernel estimation / without kernel estimation):

M index:    0.0796 / 0.0741

J index =    4.6087/ 2.5176

Entropy =   -1.0167/ -0.5461

Maybe apart from the M index, the values showed a considerable discrepancy. For this type of quantification analysis, does the kernel estimation adds more reliability to the data?

Reply all
Reply to author
Forward
0 new messages