回复: 回复:[mpluser] 求unweighted means?

11 views
Skip to first unread message

星牧童

unread,
Apr 19, 2014, 8:36:44 AM4/19/14
to xinxi813
marginal mean weighting 附件文献
This article has systematically introduced MMW-S as an alternative to the existing propensity score-based causal inference methods for multilevel educational data. 

加权的有公式,没有软件。你可以问作者。公式很复杂,看不懂
加权的比没加权的复杂多了,SPSS输出的通常没有加权吧,手动回归残差求的也没有加权。

你问文献里面的大牛啦 
帮不了你



------------------ 原始邮件 ------------------
发件人: "xinxi813";<xinx...@126.com>;
发送时间: 2014年4月19日(星期六) 晚上7:55
收件人: "mpluser"<mpl...@googlegroups.com>;
主题: 回复: 回复:[mpluser] 求unweighted means?

谢谢牧童啊。
 
这个marginal是weighted过的还是没有weighted过的呀?求文献。
 
关键是,在multilevel的情况下,这个平均数的standard error也不知道怎么求。
 
你旁边有高手么,帮忙扩散这个问题吧。求扩散。。。。
 

ya
 
发件人: 星牧童
发送时间: 2014-04-19 14:43
收件人: xinxi813
主题: 回复:[mpluser] 求unweighted means?
据说,可以先拿协变量对研究关心的变量做回归,得到的残差代替这些变量的原始值来统计,得到的就是Marginal


------------------ 原始邮件 ------------------
发件人: "xinxi813";<xinx...@126.com>;
发送时间: 2014年4月19日(星期六) 晚上7:00
收件人: "mpluser"<mpl...@googlegroups.com>;
主题: [mpluser] 求unweighted means?

大家,
 
请问有人知道这个东西怎么通过SEM的方式来求么?
 
在SPSS里面,这个被叫做Estimated Marginal means(EM means),SAS里面叫做Least Square means(LS means),通常是anova结果的一部分。
 
求指点。。。。
 

ya

--
-- 本小组推荐:
http://www.statmodel.com/
http://quantpsy.org/
http://www.kthau.com/?page_id=81
http://www.caldar.org/html/2010%20Speakers/mcardle.html
http://courses.nus.edu.sg/course/psycwlm/internet/
(4 TEACHING------4.2 Some notes from previous workshops)
http://blog.sina.com.cn/u/2142257021
http://lavaan.ugent.be/
http://personality-project.org/r/r.guide.html#Intro


You received this message because you are subscribed to the Google
Groups "Mplus学习小组" group.
To post to this group, send email to mpl...@googlegroups.com
To unsubscribe from this group, send email to
mpluser+u...@googlegroups.com
For more options, visit this group at
http://groups.google.com/group/mpluser?hl=zh-TW
---
You received this message because you are subscribed to the Google Groups "Mplus学习小组" group.
To unsubscribe from this group and stop receiving emails from it, send an email to mpluser+u...@googlegroups.com.
For more options, visit https://groups.google.com/d/optout.

--
-- 本小组推荐:
http://www.statmodel.com/
http://quantpsy.org/
http://www.kthau.com/?page_id=81
http://www.caldar.org/html/2010%20Speakers/mcardle.html
http://courses.nus.edu.sg/course/psycwlm/internet/
(4 TEACHING------4.2 Some notes from previous workshops)
http://blog.sina.com.cn/u/2142257021
http://lavaan.ugent.be/
http://personality-project.org/r/r.guide.html#Intro
 
 
You received this message because you are subscribed to the Google
Groups "Mplus学习小组" group.
To post to this group, send email to mpl...@googlegroups.com
To unsubscribe from this group, send email to
mpluser+u...@googlegroups.com
For more options, visit this group at
http://groups.google.com/group/mpluser?hl=zh-TW
---
You received this message because you are subscribed to the Google Groups "Mplus学习小组" group.
To unsubscribe from this group and stop receiving emails from it, send an email to mpluser+u...@googlegroups.com.
For more options, visit https://groups.google.com/d/optout.

--
-- 本小组推荐:
http://www.statmodel.com/
http://quantpsy.org/
http://www.kthau.com/?page_id=81
http://www.caldar.org/html/2010%20Speakers/mcardle.html
http://courses.nus.edu.sg/course/psycwlm/internet/
(4 TEACHING------4.2 Some notes from previous workshops)
http://blog.sina.com.cn/u/2142257021
http://lavaan.ugent.be/
http://personality-project.org/r/r.guide.html#Intro


You received this message because you are subscribed to the Google
Groups "Mplus学习小组" group.
To post to this group, send email to mpl...@googlegroups.com
To unsubscribe from this group, send email to
mpluser+u...@googlegroups.com
For more options, visit this group at
http://groups.google.com/group/mpluser?hl=zh-TW
---
You received this message because you are subscribed to the Google Groups "Mplus学习小组" group.
To unsubscribe from this group and stop receiving emails from it, send an email to mpluser+u...@googlegroups.com.
For more options, visit https://groups.google.com/d/optout.
Hong_2010_JEBS.pdf

ya

unread,
Apr 20, 2014, 2:35:42 PM4/20/14
to mpl...@googlegroups.com
同学,这个文章其实说的不是我的那个问题,不过确实提了个醒。
实际上需要的是在level-1的within-cluster里不要根据各treatment combination的sample size来加权,但是在整个模型里,的确要weight stratification。文章说的其实是后面这个问题。
我发了邮件了。。。
继续求搭理。。。。。
Reply all
Reply to author
Forward
0 new messages