Yes, It is really easy in R Statistics:
library(tidyverse)
#################################################################
source_path <- dirname(rstudioapi::getSourceEditorContext()$path)
setwd(source_path )
getwd()
#################################################################
file.list <- list.files(pattern='*.csv', recursive = TRUE)
pure_list <- grep("logger.csv$", file.list, value = TRUE)
###
df.list <- lapply(pure_list, read.csv) # Some kind of function to perform reading csv
df <- bind_rows(df.list, .id = "id") %>% select(-time.1)
###
Nsub <- length(unique(df$id)) # To derive SE
df_sum <- df %>% group_by(time) %>%
dplyr::summarize(Mean = mean(num_T, na.rm=TRUE), SD = sd(num_T, na.rm=TRUE), SE = sd(num_T, na.rm=TRUE)/sqrt(Nsub)) %>%
mutate(UPPER = Mean + SE, LOWER = Mean - SE) %>%
filter(row_number() %% 5 == 1) # To decrease sampling
суббота, 30 ноября 2024 г. в 20:53:37 UTC+3, Эрвин Визард (Earvin Wizard):