Eigenvectors of the spin-orbit matrix

17 views
Skip to first unread message

wj

unread,
Jul 1, 2025, 5:36:53 AMJul 1
to molpr...@googlegroups.com
Dear Molpro developers and users, 

I calculated the spin-orbit eigenstates and eigenvectors for the SeH diatomic molecule but encountered issues matching the eigenvectors of the spin-orbit matrix to the target electronic states. 
For example, the ground state of SeH is X²Π. With spin-orbit coupling, it splits into two Ω states X²Π(1/2) and X²Π(3/2). Based on the eigenvectors of the spin-orbit matrix, I thought :
  <1.2|LZLZ|1.2> = 1.00
  For Column 1, State=1.2 S=0.5 Sz=-0.5 corresponds to X²Π(1/2) state
  For Column 2, State=1.2 S=0.5 Sz=0.5 corresponds to X²Π(3/2) state

However, the spin-orbit eigenvalues show these two states are degenerate in energy, indicating my assignment is likely incorrect. How should the Ω states X²Π(1/2) and X²Π(3/2) correctly correspond to the spin-orbit eigenvectors? I've attached the output file for reference.

Eigenvectors of spin-orbit matrix ================================= Basis states Eigenvectors (columnwise) Nr State S Sz 1 2 3 4 1 1.2 0.5 0.5 -0.000928263 0.999566684 0.000000016 0.001906563 -0.000000000 0.000000000 0.000000000 -0.000000000 2 2.2 0.5 0.5 0.000000033 -0.000035409 -0.000000003 -0.000412895 -0.000000000 -0.000000000 0.000000000 -0.000000000 3 1.2 0.5 -0.5 0.999566684 0.000928263 -0.001906542 0.000000016 -0.000000001 -0.000000000 0.000008827 -0.000000000 4 2.2 0.5 -0.5 -0.000035409 -0.000000033 0.000412891 -0.000000003 0.000000000 0.000000000 -0.000001912 0.000000000
Thank you very much in advance!
Best wishes,
WJ
SeH_SOC.out
Reply all
Reply to author
Forward
0 new messages