[CfP] 𝟮𝗻𝗱 𝗖𝗮𝘂𝘀𝗮𝗹 𝗡𝗲𝘂𝗿𝗼-𝗦𝘆𝗺𝗯𝗼𝗹𝗶𝗰 𝗔𝗿𝘁𝗶𝗳𝗶𝗰𝗶𝗮𝗹 𝗜𝗻𝘁𝗲𝗹𝗹𝗶𝗴𝗲𝗻𝗰𝗲 (𝗖𝗮𝘂𝘀𝗮𝗹 𝗡𝗲𝗦𝘆) 𝗪𝗼𝗿𝗸𝘀𝗵𝗼𝗽: 𝗧𝗼𝘄𝗮𝗿𝗱 𝗔𝗴𝗲𝗻𝘁𝗶𝗰 𝗟𝗟𝗠𝘀 𝘄𝗶𝘁𝗵 𝗡𝗲𝘂𝗿𝗼-𝗦𝘆𝗺𝗯𝗼𝗹𝗶𝗰 𝗮𝗻𝗱 𝗚𝗿𝗮𝗽𝗵-𝗕𝗮𝘀𝗲𝗱 𝗥𝗲𝗮𝘀𝗼𝗻𝗶𝗻𝗴

44 views
Skip to first unread message

Utkarshani Jaimini

unread,
Feb 6, 2026, 8:10:54 PM (3 days ago) Feb 6
to semant...@googlegroups.com, plan...@kr.org, women-in-mac...@googlegroups.com, ontolo...@googlegroups.com, uai-...@googlegroups.com, ml-...@googlegroups.com
************************************************************************************
𝗖𝗮𝗹𝗹 𝗳𝗼𝗿 𝗣𝗮𝗽𝗲𝗿𝘀 | 𝟮𝗻𝗱 𝗖𝗮𝘂𝘀𝗮𝗹 𝗡𝗲𝘂𝗿𝗼-𝗦𝘆𝗺𝗯𝗼𝗹𝗶𝗰 𝗔𝗿𝘁𝗶𝗳𝗶𝗰𝗶𝗮𝗹 𝗜𝗻𝘁𝗲𝗹𝗹𝗶𝗴𝗲𝗻𝗰𝗲 (𝗖𝗮𝘂𝘀𝗮𝗹 𝗡𝗲𝗦𝘆) 𝗪𝗼𝗿𝗸𝘀𝗵𝗼𝗽
𝗧𝗼𝘄𝗮𝗿𝗱 𝗔𝗴𝗲𝗻𝘁𝗶𝗰 𝗟𝗟𝗠𝘀 𝘄𝗶𝘁𝗵 𝗡𝗲𝘂𝗿𝗼-𝗦𝘆𝗺𝗯𝗼𝗹𝗶𝗰 𝗮𝗻𝗱 𝗚𝗿𝗮𝗽𝗵-𝗕𝗮𝘀𝗲𝗱 𝗥𝗲𝗮𝘀𝗼𝗻𝗶𝗻𝗴
************************************************************************************
🗓 𝗜𝗺𝗽𝗼𝗿𝘁𝗮𝗻𝘁 𝗗𝗮𝘁𝗲𝘀
Paper submission deadline: 3 March 2026
Notification to authors: 31 March 2026
Camera-ready papers due: 15 April 2026

🔗 𝗪𝗼𝗿𝗸𝘀𝗵𝗼𝗽 𝘄𝗲𝗯𝘀𝗶𝘁𝗲 & 𝘀𝘂𝗯𝗺𝗶𝘀𝘀𝗶𝗼𝗻 𝗱𝗲𝘁𝗮𝗶𝗹𝘀:
👉 https://sites.google.com/view/causalnesy2026/
📄 We invite original research papers, position papers, and visionary contributions from academia and industry.
✨ Join us in shaping the future of causal, interpretable, and agentic AI, where intelligent systems are built not just to see patterns, but to understand causes and reason symbolically.
************************************************************************************
As Artificial Intelligent (AI) systems increasingly influence high-stakes decisions in healthcare, manufacturing, robotics, and autonomous systems, there is a growing need for models capable of causal, interpretable, and knowledge-grounded reasoning. In parallel, the rise of agentic AI and large language models (LLMs) has created new opportunities to combine semantic knowledge representations with powerful generative and multimodal capabilities. 𝗧𝗵𝗶𝘀 𝘄𝗼𝗿𝗸𝘀𝗵𝗼𝗽 𝗮𝗶𝗺𝘀 𝘁𝗼 𝗯𝘂𝗶𝗹𝗱 𝗮 𝗰𝗿𝗼𝘀𝘀-𝗱𝗶𝘀𝗰𝗶𝗽𝗹𝗶𝗻𝗮𝗿𝘆 𝗰𝗼𝗺𝗺𝘂𝗻𝗶𝘁𝘆 𝗮𝗱𝘃𝗮𝗻𝗰𝗶𝗻𝗴 𝗮𝗴𝗲𝗻𝘁𝗶𝗰, 𝗰𝗮𝘂𝘀𝗮𝗹, 𝗻𝗲𝘂𝗿𝗼𝘀𝘆𝗺𝗯𝗼𝗹𝗶𝗰, 𝗮𝗻𝗱 𝗸𝗻𝗼𝘄𝗹𝗲𝗱𝗴𝗲-𝗴𝗿𝗮𝗽𝗵-𝗱𝗿𝗶𝘃𝗲𝗻 𝗔𝗜 𝘄𝗶𝘁𝗵𝗶𝗻 𝘁𝗵𝗲 𝘀𝗲𝗺𝗮𝗻𝘁𝗶𝗰 𝘄𝗲𝗯 𝗲𝗰𝗼𝘀𝘆𝘀𝘁𝗲𝗺.

📌 𝗧𝗼𝗽𝗶𝗰𝘀 𝗼𝗳 𝗶𝗻𝘁𝗲𝗿𝗲𝘀𝘁 𝗶𝗻𝗰𝗹𝘂𝗱𝗲 (𝗯𝘂𝘁 𝗮𝗿𝗲 𝗻𝗼𝘁 𝗹𝗶𝗺𝗶𝘁𝗲𝗱 𝘁𝗼):
• Causal reasoning for agentic and autonomous LLMs
• Neuro-symbolic architectures for reasoning, planning, and control
• Causal reasoning in Agent Architectures
• Integration of causality, logic, and probability for verifiable agent behavior
• Explainability, interventions, and counterfactual reasoning
• Applications in robotics, healthcare, science, and knowledge-based systems

Best regards
--

Utkarshani Jaimini

Incoming Assistant Professor

Dept of Computer and Information Sciences

University of Michigan - Dearborn  

https://utkarshani.github

                                         

“Take advantage of every opportunity, where there is none, make it for yourself”, Marcus Garvey

Reply all
Reply to author
Forward
0 new messages