I am doing SBAS InSAR using MintPy and the temporal coherence is coming as fully white, the average spatial coherence results are fine. Can somebody suggest what may be the reason? I have tried by changing the minimum threshold values also still the same is coming. I am attaching the screenshot of the temporal coherence and also the configuration file
CONFIG_TXT = f'''# vim: set filetype=cfg:
mintpy.load.processor = hyp3
mintpy.compute.maxMemory = auto #[float > 0.0], auto for 4, max memory to allocate in GB
ORBIT_DIRECTION = ascending
##---------interferogram datasets:
mintpy.load.unwFile = {hyp3_dir}/*/*_unw_phase_clipped.tif
mintpy.load.corFile = {hyp3_dir}/*/*_corr_clipped.tif
mintpy.load.connCompFile = {hyp3_dir}/*/*_connComp_clipped.tif #[path pattern of connected components files], optional but recommended
mintpy.load.intFile = {hyp3_dir}/*/*_wrapped_phase_clipped.tif
##---------geometry datasets:
mintpy.load.demFile = {hyp3_dir}/*/*_dem_clipped.tif
mintpy.load.incAngleFile = {hyp3_dir}/*/*_lv_theta_clipped.tif
mintpy.load.azAngleFile = {hyp3_dir}/*/*_lv_phi_clipped.tif
mintpy.load.waterMaskFile = {hyp3_dir}/*/*_water_mask_clipped.tif, optional but recommended
mintpy.network.coherenceBased = yes #[yes / no], auto for no, exclude interferograms with coh < minCoh
mintpy.network.minCoherence = auto #[0.0-1.0], auto for 0.7
mintpy.network.keepMinSpanTree = auto #[yes / no], auto for yes, keep interferograms in Min Span Tree network
mintpy.network.maskFile = no #[file name, no], auto for waterMask.h5 or no [if no waterMask.h5 found]
mintpy.network.aoiYX = auto #[y0:y1,x0:x1 / no], auto for no, area of interest for coherence calculation
mintpy.network.aoiLALO = auto #[S:N,W:E / no], auto for no - use the whole area
mintpy.reference.yx = auto #[257,151 / auto]
mintpy.reference.lalo = auto #[31.8,130.8 / auto]
mintpy.reference.maskFile = {work_dir}/maskConnComp.h5 #[filename / no], auto for maskConnComp.h5
mintpy.reference.coherenceFile = {work_dir}/avgSpatialCoh.h5 #[filename], auto for avgSpatialCoh.h5
mintpy.reference.minCoherence = auto #[0.0-1.0], auto for 0.85, minimum coherence for auto method
mintpy.reference.lalo = 27.662,89.055 #[31.8,130.8 / auto] #[N,E]
mintpy.reference.date = auto #[reference_date.txt / 20090214 / no], auto for reference_date.txt
mintpy.solidEarthTides = yes #[yes / no], auto for no
mintpy.deramp = quadratic #[no / linear / quadratic], auto for no - no ramp will be removed
mintpy.deramp.maskFile = {work_dir}/maskTempCoh.h5 #[filename / no], auto for maskTempCoh.h5,
#mask file for ramp estimation
mintpy.troposphericDelay.method = height_correlation #[pyaps / height_correlation / gacos / no], auto for pyaps
mintpy.topographicResidual = auto #[yes / no], auto for yes
mintpy.topographicResidual.polyOrder = auto #[1-inf], auto for 2, poly order of temporal deformation model
mintpy.topographicResidual.phaseVelocity = {work_dir}/avgPhaseVelocity.h5 #[yes / no], auto for no - use phase velocity for minimization
mintpy.topographicResidual.stepFuncDate = auto #[20080529,20190704T1733 / no], auto for no, date of step jump
mintpy.topographicResidual.excludeDate = auto #[20070321 / txtFile / no], auto for exclude_date.txt
mintpy.topographicResidual.pixelwiseGeometry = {work_dir}/inputs/geometryGeo.h5 #[yes / no], auto for yes, use pixel-wise geometry info
mintpy.residualRMS.maskFile = {work_dir}/maskTempCoh.h5 #[file name / no], auto for maskTempCoh.h5, mask for ramp estimation
mintpy.residualRMS.deramp = auto #[quadratic / linear / no], auto for quadratic
mintpy.residualRMS.cutoff = auto #[0.0-inf], auto for 3
mintpy.save.hdfEos5 = yes #[yes / no], auto for no, save time-series to HDF-EOS5 format
mintpy.plot.dpi = 400 #[int], auto for 150, number of dots per inch (DPI)
mintpy.geocode.laloStep = auto #[-0.000555556,0.000555556 / None], auto for None, output resolution in degree
## c. bridging+phase_closure - recommended when there is a small percentage of errors left after bridging
mintpy.unwrapError.method = auto #[bridging / phase_closure / bridging+phase_closure / no], auto for no
mintpy.unwrapError.waterMaskFile = auto #[waterMask.h5 / no], auto for waterMask.h5 or no [if not found]
mintpy.unwrapError.connCompMinArea = auto #[1-inf], auto for 2.5e3, discard regions smaller than the min size in pixels
## phase_closure options:
## numSample - a region-based strategy is implemented to speedup L1-norm regularized least squares inversion.
## Instead of inverting every pixel for the integer ambiguity, a common connected component mask is generated,
## for each common conn. comp., numSample pixels are radomly selected for inversion, and the median value of the results
## are used for all pixels within this common conn. comp.
mintpy.unwrapError.numSample = auto #[int>1], auto for 100, number of samples to invert for common conn. comp.
## bridging options:
## ramp - a phase ramp could be estimated based on the largest reliable region, removed from the entire interferogram
## before estimating the phase difference between reliable regions and added back after the correction.
## bridgePtsRadius - half size of the window used to calculate the median value of phase difference
mintpy.unwrapError.ramp = auto #[linear / quadratic], auto for no; recommend linear for L-band data
mintpy.unwrapError.bridgePtsRadius = auto #[1-inf], auto for 50, half size of the window around end points
mintpy.load.connCompFile = {hyp3_dir}/*/*_connComp_clipped.tif # Path to SNAPHU-generated connected component files
mintpy.networkInversion.minTempCoh = auto #[0.0-1.0], auto for 0.7, min temporal coherence for mask
'''
print(CONFIG_TXT)
configName = os.path.join(work_dir, "{}.txt".format(proj_name))
configure_template_file(configName, CONFIG_TXT)