I have found
shorter proof strings for some more lemmas.
(L2)
DD2SSD2SD2D1DD2S3D2S311SDD2S21D1S3D2D1D3DD2S3S311S211D2D1SSD2S8DD28D3DD2S31SaSD4GDD2S95571S5SDD21bD4GSD3DD2S31SaSD4GDD2S95575D1S8S5SDD21bD4GSD3DD2S31SaSD4GDD2S95575
(L3)
DD2SSD2SD2D1DD2S3D2S311SDD2S21D1S3D2D1D3DD2S3S311S211D2D1SdS5SDD21bD4GSD3DD2S31SaSD4GDD2S95575D1ScS5SDD21bD4GSD3DD2S31SaSD4GDD2S95575
(L6)
DD2SSSDD22D11S12SD2D1SD2SD2D1DD2S3D2S311SDD2S21D1S3D2D1D3DD2S3S311S211S21D1S4D4GSD155D2D1SD2DDD21DD22D151DD2S21D15
(L7a):
(((P∨Q)∨R)⇒S)⇒(((Q∨P)∨R)⇒S), shorter than the one a I posted before
DSD2S211DSD2S211DSS3SDD22D2S3S311D2D1D3DD2S3S311S3D2D1D3DD2S3S311
(L8):
(((P⇒Q)∨R)⇒S)⇒((P⇒(Q∨R))⇒S)
DD2S21D1SS3D2D1D3DD2S3S311SSDD22D11S12D2D1S3D2D1D3DD2S3S311
(L8a)
reverse associativity version: ((P⇒(Q∨R))⇒S)⇒(((P⇒Q)∨R)⇒S)
DSD2S211SD2D1S3D2D1D3DD2S3S311SSDD22D11S12S3D2D1D3DD2S3S311
(L8a,
my version): ((((P⇒Q)∨R)∨S)⇒T)⇒(((P⇒(Q∨R))∨S)⇒T), shorter than the one a I posted before
DSD2D1D2D1DD2S3D2S311DDSDD22D11S12S2SD2D12SD2D11SD2D12SD2D11DSD2S211DD2S21D1SD2S311SD2D1S3D2D1D3DD2S3S311DDSDD22D11S12S2S1S21D2D11DD2S21D1SS3D2D1D3DD2S3S311SSDD22D11S12D2D1S3D2D1D3DD2S3S311
(L11),
shorter than the one a I posted before
DDD2S21D2D11D1DD211
((P⇒Q)⇒(R⇒Q))⇒(((P∨S)⇒Q)⇒((R∨S)⇒Q)),
shorter than the one a I posted before
SD2D1D2D1DD2S3D2S311DDSDD22D11S12S2SD2D12SD2D11SD2D12SD2D11DSD2S211DD2S21D1SD2S311SD2D1S3D2D1D3DD2S3S311DDSDD22D11S12S2S1S21D2D11