Hi Jamie,
I have to rebuild the model based on the parameter derived as I wanted to carry out 10 replicates. surprisingly the AUC are different.
I have kept the background constant.
eval.results <- ENMevaluate(occ=pres.data.clean[,c("longitude", "latitude")], env=stk_Current, a=abs.data, RMvalues=c(0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50, 5),fc=c("L", "LQ", "H", "LQH", "LQHP", "LQHPT"),method = "randomkfold", kfolds = 5,rasterPreds=TRUE, algorithm='maxent.jar',bin.output = TRUE, clamp = TRUE,parallel = TRUE,numCores = ncore,progbar = F)
and here then I carry out 10 replicates using derived FC and RM values.
Here is ENMEval results for Delta AIC==0
train.AUC 0.9209
avg.test.AUC 0.904296
Whereas 10 replicates from maxent give me
train.AUC:0.8606 - 0.8575 - 00.8502 - 0.8514 - 0.8499- 0.8463 - 0.8561 - 0.8616 - 0.8564 - 0.8552
test.AUC: 0.7816 - 0.768 - 0.8457 - 0.7977 - 0.791- 0.9485-0.809-0.767-0.8437-0.8268
I'm using maxent.jar 3.3.3k
Regards