Statistics /Pearson's chi-squared test/Goodness of fit.

3 views
Skip to first unread message

sayanyein

unread,
Mar 6, 2019, 12:54:15 PM3/6/19
to Mandalay University Family 2006

Goodness of fit

Main article: Goodness of fit

In this context, the frequencies of both theoretical and empirical distributions are unnormalised counts, and for a chi-squared test the total sample sizes N {\displaystyle N} of both these distributions (sums of all cells of the corresponding contingency tables) have to be the same.

For example, to test the hypothesis that a random sample of 100 people has been drawn from a population in which men and women are equal in frequency, the observed number of men and women would be compared to the theoretical frequencies of 50 men and 50 women. If there were 44 men in the sample and 56 women, then

χ 2 = ( 44 50 ) 2 50 + ( 56 50 ) 2 50 = 1.44. {\displaystyle \chi ^{2}={(44-50)^{2} \over 50}+{(56-50)^{2} \over 50}=1.44.}

If the null hypothesis is true (i.e., men and women are chosen with equal probability), the test statistic will be drawn from a chi-squared distribution with one degree of freedom (because if the male frequency is known, then the female frequency is determined).

Consultation of the chi-squared distribution for 1 degree of freedom shows that the probability of observing this difference (or a more extreme difference than this) if men and women are equally numerous in the population is approximately 0.23. This probability is higher than conventional criteria for statistical significance (0.01 or 0.05), so normally we would not reject the null hypothesis that the number of men in the population is the same as the number of women (i.e., we would consider our sample within the range of what we would expect for a 50/50 male/female ratio.)

Reply all
Reply to author
Forward
0 new messages