Hi Kumar,
If you only need the simplicial complex over the polynomial ring with the changed degrees, you could just create it there to begin with. Otherwise, you could use a ring map to create a copy of the ideal in the polynomial ring with the changed degrees and then use this new ideal to create the simplicial complex over that ring. Here is some code.
i1 : R=QQ[x_1..x_3]
o1 = R
o1 : PolynomialRing
i2 : needsPackage "SimplicialComplexes"
-- warning: symbol "GradedModuleMap" in OldChainComplexes.Dictionary is shadowed by a symbol in Complexes.Dictionary
-- use the synonym OldChainComplexes$GradedModuleMap
-- warning: symbol "GradedModule" in OldChainComplexes.Dictionary is shadowed by a symbol in Complexes.Dictionary
-- use the synonym OldChainComplexes$GradedModule
-- warning: symbol "res" in OldChainComplexes.Dictionary is shadowed by a symbol in Complexes.Dictionary
-- use one of the synonyms OldChainComplexes$res, OldChainComplexes$resolution
-- warning: symbol "resolution" in OldChainComplexes.Dictionary is shadowed by a symbol in Complexes.Dictionary
-- use one of the synonyms OldChainComplexes$res, OldChainComplexes$resolution
o2 = SimplicialComplexes
o2 : Package
i3 : K=simplicialComplex{x_1*x_2,x_1*x_3,x_2*x_3}
o3 = simplicialComplex | x_2x_3 x_1x_3 x_1x_2 |
o3 : SimplicialComplex
i4 : I=monomialIdeal K
o4 = monomialIdeal(x x x )
1 2 3
o4 : MonomialIdeal of R
i5 : S=QQ[y_1..y_3,Degrees=>{{1,0,0},{0,1,0},{0,0,1}}]
o5 = S
o5 : PolynomialRing
i6 : f=map(S,R,vars S)
o6 = map (S, R, {y , y , y })
1 2 3
o6 : RingMap S <-- R
i7 : J=f I
o7 = ideal(y y y )
1 2 3
o7 : Ideal of S
i8 : degrees J
o8 = {{1, 1, 1}}
o8 : List
i9 : L=simplicialComplex monomialIdeal J
o9 = simplicialComplex | y_2y_3 y_1y_3 y_1y_2 |
o9 : SimplicialComplex
i10 : ring L
o10 = S
o10 : PolynomialRing