What you said did help me a lot, altho right now my code uses the Parameters class and not Parameter. From the Parameters class, it is possible to easily get the valuesdict() function to have the value of each variable. However, it does not give the standard error and I can't seem to find a way to do so.
x1, x2, x3, y1, y2, y3 = seperate(x,y,rad,y_mW)
def lorentzian (params, x, y):
amp = params['amp'].value
cen = params['cen'].value
wid = params['wid'].value
model = (amp/np.pi)*(wid/((x-cen)**2+wid**2))
return model - y
params1=Parameters()
params1.add('amp', value = 3.39600134e-08)
params1.add('cen', value = 3.61278628e+09)
params1.add('wid', value = 1.26835853e+06)
params2=Parameters()
params2.add('amp', value = 9.4943e-08)
params2.add('cen', value = 7.17278628e+09)
params2.add('wid', value = 4.26835853e+06)
params3=Parameters()
params3.add('amp', value = 5.39600134e-07)
params3.add('cen', value = 10.05278628e+09)
params3.add('wid', value = 3.26835853e+07)
result1 = minimize(lorentzian, params1, args=(x1, y1))
result2 = minimize(lorentzian, params2, args=(x2, y2))
result3 = minimize(lorentzian, params3, args=(x3, y3))
final1= y1 + result1.residual
final2= y2 + result2.residual
final3= y3 + result3.residual
report_fit(result1.params)
report_fit(result2.params)
report_fit(result3.params)
l=params1.valuesdict()
print(l)