However, as we can see in the llvm-IR, apart from load/store instructions for array accesses we interested, there are lots of load/store instructions for iteration variables, i and j for the above example. And these noise load/store instructions will affect whether we have dependencies across loop iterations (loop-carried dependence) and dependence distance calculation
I doubt there is any easy way to pick up ‘interesting ld/st’ and ignore the rest. If you are looking for only dependences which are inter-iteration (dependence distance != 0 ) you can do a post-pass on the ld/st addresses collected and eliminate such intra-iteration dependences. Maybe there is a smarter way J
I doubt there is any easy way to pick up ‘interesting ld/st’ and ignore the rest. If you are looking for only dependences which are inter-iteration (dependence distance != 0 ) you can do a post-pass on the ld/st addresses collected and eliminate such intra-iteration dependences. Maybe there is a smarter way J
_______________________________________________
LLVM Developers mailing list
LLV...@cs.uiuc.edu http://llvm.cs.uiuc.edu
http://lists.cs.uiuc.edu/mailman/listinfo/llvmdev
This may not be very helpful but you can try one of these:
a) Identify the loop-control-variable and other loop-induction variables in the compiler and do not track the ld/st of these variables (because you know how they behave)
b) Create a separate section in the profile dump for the addresses of the loop induction vars and during a post-pass you can do a special handling for these addresses.
_______________________________________________
LLVM Developers mailing list
LLV...@cs.uiuc.edu http://llvm.cs.uiuc.edu
http://lists.cs.uiuc.edu/mailman/listinfo/llvmdev