The Natural Sciences exam covers a wide range of topics frequently taught in introductory courses surveying both biological and physical sciences at the freshman or sophomore level. Such courses generally satisfy distribution or general education requirements in science that usually are not required of nor taken by science majors. The Natural Sciences exam is not intended for those specializing in science; it is intended to test the understanding of scientific concepts that an adult with a liberal arts education should have. It does not stress the retention of factual details; rather, it emphasizes the knowledge and application of the basic principles and concepts of science, the comprehension of scientific information, and the understanding of issues of science in contemporary society.
The primary objective of the exam is to give candidates the opportunity to demonstrate a level of knowledge and understanding expected of college students meeting a distribution or general education requirement in the natural sciences. An institution may grant college credit toward fulfillment of such a requirement for satisfactory scores on the exam. Some may grant specific course credit, on the basis of the total score for a two-semester survey course covering both biological and physical sciences.
The exam includes some questions that are interdisciplinary and cannot be classified in one of the listed categories. Some of the questions cover topics that overlap with those listed previously, drawing on areas such as history and philosophy of science, scientific methods, science applications and technology, and the relationship of science to contemporary problems of society, such as environmental pollution and depletion of natural resources. Some questions are laboratory oriented.
Note: Each institution reserves the right to set its own credit-granting policy, which may differ from the American Council on Education (ACE). Contact your college to find out the score required for credit and the number of credit hours granted.
Science is a strict systematic discipline that builds and organizes knowledge in the form of testable hypotheses and predictions about the world.[1][2] Modern science is typically divided into three major branches:[3] the natural sciences (e.g., physics, chemistry, and biology), which study the physical world; the social sciences (e.g., economics, psychology, and sociology), which study individuals and societies;[4][5] and the formal sciences (e.g., logic, mathematics, and theoretical computer science), which study formal systems, governed by axioms and rules.[6][7] There is disagreement whether the formal sciences are scientific disciplines,[8][9][10] as they do not rely on empirical evidence.[11][9] Applied sciences are disciplines that use scientific knowledge for practical purposes, such as in engineering and medicine.[12][13][14]
The recovery and assimilation of Greek works and Islamic inquiries into Western Europe from the 10th to 13th century revived "natural philosophy",[20][21][22] which was later transformed by the Scientific Revolution that began in the 16th century[23] as new ideas and discoveries departed from previous Greek conceptions and traditions.[24][25] The scientific method soon played a greater role in knowledge creation and it was not until the 19th century that many of the institutional and professional features of science began to take shape,[26][27] along with the changing of "natural philosophy" to "natural science".[28]
New knowledge in science is advanced by research from scientists who are motivated by curiosity about the world and a desire to solve problems.[29][30] Contemporary scientific research is highly collaborative and is usually done by teams in academic and research institutions,[31] government agencies, and companies.[32][33] The practical impact of their work has led to the emergence of science policies that seek to influence the scientific enterprise by prioritizing the ethical and moral development of commercial products, armaments, health care, public infrastructure, and environmental protection.
The word science has been used in Middle English since the 14th century in the sense of "the state of knowing". The word was borrowed from the Anglo-Norman language as the suffix -cience, which was borrowed from the Latin word scientia, meaning "knowledge, awareness, understanding". It is a noun derivative of the Latin sciens meaning "knowing", and undisputedly derived from the Latin sciō, the present participle scīre, meaning "to know".[34]
In the past, science was a synonym for "knowledge" or "study", in keeping with its Latin origin. A person who conducted scientific research was called a "natural philosopher" or "man of science".[36] In 1834, William Whewell introduced the term scientist in a review of Mary Somerville's book On the Connexion of the Physical Sciences,[37] crediting it to "some ingenious gentleman" (possibly himself).[38]
Science has no single origin. Rather, systematic methods emerged gradually over the course of tens of thousands of years,[39][40] taking different forms around the world, and few details are known about the very earliest developments. Women likely played a central role in prehistoric science,[41] as did religious rituals.[42] Some scholars use the term "protoscience" to label activities in the past that resemble modern science in some but not all features;[43][44][45] however, this label has also been criticized as denigrating,[46] or too suggestive of presentism, thinking about those activities only in relation to modern categories.[47]
The ancient Mesopotamians used knowledge about the properties of various natural chemicals for manufacturing pottery, faience, glass, soap, metals, lime plaster, and waterproofing.[52] They studied animal physiology, anatomy, behavior, and astrology for divinatory purposes.[53] The Mesopotamians had an intense interest in medicine and the earliest medical prescriptions appeared in Sumerian during the Third Dynasty of Ur.[52][54] They seem to have studied scientific subjects which had practical or religious applications and had little interest in satisfying curiosity.[52]
In classical antiquity, there is no real ancient analog of a modern scientist. Instead, well-educated, usually upper-class, and almost universally male individuals performed various investigations into nature whenever they could afford the time.[55] Before the invention or discovery of the concept of phusis or nature by the pre-Socratic philosophers, the same words tend to be used to describe the natural "way" in which a plant grows,[56] and the "way" in which, for example, one tribe worships a particular god. For this reason, it is claimed that these men were the first philosophers in the strict sense and the first to clearly distinguish "nature" and "convention".[57]
A turning point in the history of early philosophical science was Socrates' example of applying philosophy to the study of human matters, including human nature, the nature of political communities, and human knowledge itself. The Socratic method as documented by Plato's dialogues is a dialectic method of hypothesis elimination: better hypotheses are found by steadily identifying and eliminating those that lead to contradictions. The Socratic method searches for general commonly-held truths that shape beliefs and scrutinizes them for consistency.[66] Socrates criticized the older type of study of physics as too purely speculative and lacking in self-criticism.[67]
Aristotle in the 4th century BCE created a systematic program of teleological philosophy.[68] In the 3rd century BCE, Greek astronomer Aristarchus of Samos was the first to propose a heliocentric model of the universe, with the Sun at the center and all the planets orbiting it.[69] Aristarchus's model was widely rejected because it was believed to violate the laws of physics,[69] while Ptolemy's Almagest, which contains a geocentric description of the Solar System, was accepted through the early Renaissance instead.[70][71] The inventor and mathematician Archimedes of Syracuse made major contributions to the beginnings of calculus.[72] Pliny the Elder was a Roman writer and polymath, who wrote the seminal encyclopedia Natural History.[73][74][75]
Positional notation for representing numbers likely emerged between the 3rd and 5th centuries CE along Indian trade routes. This numeral system made efficient arithmetic operations more accessible and would eventually become standard for mathematics worldwide.[76]
During late antiquity and the early Middle Ages, natural phenomena were mainly examined via the Aristotelian approach. The approach includes Aristotle's four causes: material, formal, moving, and final cause.[79] Many Greek classical texts were preserved by the Byzantine empire and Arabic translations were done by groups such as the Nestorians and the Monophysites. Under the Caliphate, these Arabic translations were later improved and developed by Arabic scientists.[80] By the 6th and 7th centuries, the neighboring Sassanid Empire established the medical Academy of Gondeshapur, which is considered by Greek, Syriac, and Persian physicians as the most important medical center of the ancient world.[81]
The House of Wisdom was established in Abbasid-era Baghdad, Iraq,[82] where the Islamic study of Aristotelianism flourished[83] until the Mongol invasions in the 13th century. Ibn al-Haytham, better known as Alhazen, used controlled experiment in his optical study.[a][85][86] Avicenna's compilation of the Canon of Medicine, a medical encyclopedia, is considered to be one of the most important publications in medicine and was used until the 18th century.[87]
In the sixteenth century, Nicolaus Copernicus formulated a heliocentric model of the Solar System, stating that the planets revolve around the Sun, instead of the geocentric model where the planets and the Sun revolve around the Earth. This was based on a theorem that the orbital periods of the planets are longer as their orbs are farther from the center of motion, which he found not to agree with Ptolemy's model.[92]