SoI have 64 bit Windows 10 but Technic Launcher lunches only with 32 bit Java. I have this problem only on my new pc . On my old pc (which was 64 bit too) it was working fine. I tried reinstalling Technic Launcher and Java and im lost.
for anyone coming to all these years-old threads looking to fix this problem, what helped me is updating whatever version of java i'm using WITHOUT uninstalling the previous version that technic was recognizing, opening the technic launcher, navigating to launcher options and changing which version of java to use. from here i was able to change my ram from 1gb to 4gb perfectly fine.
i have never had java 32bit installed. for whatever reason the technic launcher ran just fine with my 8.231 version of java 64bit, but upgrading to 8.381 made it unable to run. many people in other threads here and on reddit said to uninstall the previous version and keep the latest version, but the only thing that worked for me was having both versions and just switching which version to use within the technic launcher.
this thread may also be of some help for people experiencing similar problems if you're willing to do registry editing. i did everything in the thread below ncluding changing all the directories and stuff, and then installed both an older version of java 64 and the latest version, and i was able to run tekkit 2 just fine.
The Java programming language is statically-typed, which means that all variables must first be declared before they can be used. This involves stating the variable's type and name, as you've already seen:
Doing so tells your program that a field named "gear" exists, holds numerical data, and has an initial value of "1". A variable's data type determines the values it may contain, plus the operations that may be performed on it. In addition to int, the Java programming language supports seven other primitive data types. A primitive type is predefined by the language and is named by a reserved keyword. Primitive values do not share state with other primitive values. The eight primitive data types supported by the Java programming language are:
byte: The byte data type is an 8-bit signed two's complement integer. It has a minimum value of -128 and a maximum value of 127 (inclusive). The byte data type can be useful for saving memory in large arrays, where the memory savings actually matters. They can also be used in place of int where their limits help to clarify your code; the fact that a variable's range is limited can serve as a form of documentation.
int: By default, the int data type is a 32-bit signed two's complement integer, which has a minimum value of -231 and a maximum value of 231-1. In Java SE 8 and later, you can use the int data type to represent an unsigned 32-bit integer, which has a minimum value of 0 and a maximum value of 232-1. Use the Integer class to use int data type as an unsigned integer. See the section The Number Classes for more information. Static methods like compareUnsigned, divideUnsigned etc have been added to the Integer class to support the arithmetic operations for unsigned integers.
long: The long data type is a 64-bit two's complement integer. The signed long has a minimum value of -263 and a maximum value of 263-1. In Java SE 8 and later, you can use the long data type to represent an unsigned 64-bit long, which has a minimum value of 0 and a maximum value of 264-1. Use this data type when you need a range of values wider than those provided by int. The Long class also contains methods like compareUnsigned, divideUnsigned etc to support arithmetic operations for unsigned long.
float: The float data type is a single-precision 32-bit IEEE 754 floating point. Its range of values is beyond the scope of this discussion, but is specified in theFloating-Point Types, Formats, and Values section of the Java Language Specification. As with the recommendations for byte and short, use a float (instead of double) if you need to save memory in large arrays of floating point numbers. This data type should never be used for precise values, such as currency. For that, you will need to use the java.math.BigDecimal class instead. Numbers and Strings covers BigDecimal and other useful classes provided by the Java platform.
double: The double data type is a double-precision 64-bit IEEE 754 floating point. Its range of values is beyond the scope of this discussion, but is specified in theFloating-Point Types, Formats, and Values section of the Java Language Specification. For decimal values, this data type is generally the default choice. As mentioned above, this data type should never be used for precise values, such as currency.
boolean: The boolean data type has only two possible values: true and false. Use this data type for simple flags that track true/false conditions. This data type represents one bit of information, but its "size" isn't something that's precisely defined.
In addition to the eight primitive data types listed above, the Java programming language also provides special support for character strings via the java.lang.String class. Enclosing your character string within double quotes will automatically create a new String object; for example, String s = "this is a string";. String objects are immutable, which means that once created, their values cannot be changed. The String class is not technically a primitive data type, but considering the special support given to it by the language, you'll probably tend to think of it as such. You'll learn more about the String class in Simple Data Objects
It's not always necessary to assign a value when a field is declared. Fields that are declared but not initialized will be set to a reasonable default by the compiler. Generally speaking, this default will be zero or null, depending on the data type. Relying on such default values, however, is generally considered bad programming style.
Local variables are slightly different; the compiler never assigns a default value to an uninitialized local variable. If you cannot initialize your local variable where it is declared, make sure to assign it a value before you attempt to use it. Accessing an uninitialized local variable will result in a compile-time error.
You may have noticed that the new keyword isn't used when initializing a variable of a primitive type. Primitive types are special data types built into the language; they are not objects created from a class. A literal is the source code representation of a fixed value; literals are represented directly in your code without requiring computation. As shown below, it's possible to assign a literal to a variable of a primitive type:
An integer literal is of type long if it ends with the letter L or l; otherwise it is of type int. It is recommended that you use the upper case letter L because the lower case letter l is hard to distinguish from the digit 1.
Values of the integral types byte, short, int, and long can be created from int literals. Values of type long that exceed the range of int can be created from long literals. Integer literals can be expressed by these number systems:
For general-purpose programming, the decimal system is likely to be the only number system you'll ever use. However, if you need to use another number system, the following example shows the correct syntax. The prefix 0x indicates hexadecimal and 0b indicates binary:
Literals of types char and String may contain any Unicode (UTF-16) characters. If your editor and file system allow it, you can use such characters directly in your code. If not, you can use a "Unicode escape" such as '\u0108' (capital C with circumflex), or "S\u00ED Se\u00F1or" (S Seor in Spanish). Always use 'single quotes' for char literals and "double quotes" for String literals. Unicode escape sequences may be used elsewhere in a program (such as in field names, for example), not just in char or String literals.
There's also a special null literal that can be used as a value for any reference type. null may be assigned to any variable, except variables of primitive types. There's little you can do with a null value beyond testing for its presence. Therefore, null is often used in programs as a marker to indicate that some object is unavailable.
Finally, there's also a special kind of literal called a class literal, formed by taking a type name and appending ".class"; for example, String.class. This refers to the object (of type Class) that represents the type itself.
In Java SE 7 and later, any number of underscore characters (_) can appear anywhere between digits in a numerical literal. This feature enables you, for example. to separate groups of digits in numeric literals, which can improve the readability of your code.
For instance, if your code contains numbers with many digits, you can use an underscore character to separate digits in groups of three, similar to how you would use a punctuation mark like a comma, or a space, as a separator.
My server has 16gb allocated memory to ignition and after some time passes the java process reached around 15gb while the gateway memory in status page says it only consumes 4gb. Below is my ignition configuration file.
Huh. Thanks for the link. I've never seen java give memory back to the OS, so I didn't think it could. That said, I would recommend a much lower max memory setting--you really don't want the OS to start swapping.
So, do I really need a 32-bit Java version next to my 64-bit Java version? Is that even possible? Do I need to set up something else? I need the 64-bit version for other apps, I cannot replace it with a 32-bit version (provided that's even possible with 64-bit Win 7).
And I didn't even have to change JAVA_HOME to get the data loader working, it just works now. Automagically. Not even PATH was changed by the installer. java -version still reports the 64-bit version, but somehow data loader can find the 32-bit version (I guess because it was installed in its default folder).
3a8082e126