I am new user to libFM, and I am trying to use it on my own problem, but I am having difficulty doing so.
I am getting the log below.
The command is:
/root/libfm/bin/libFM -task c -train /opt/vol/data/experiments/fm_data/libfm_train.txt -test /opt/vol/data/experiments/fm_data/libfm_test.txt -dim '1,1,4' -iter 500 -learn_rate 0.1 -method sgd -regular '1,0.01,0.001' -out /opt/vol/data/experiments/predictions/000248.rdata -save_model /opt/vol/data/experiments/models/000248.rdata -verbosity 1
-----------------------------------------------------------------
Loading train...
has x = 1
has xt = 0
num_rows=1105887 num_values=38573768 num_features=349 min_target=0 max_target=1
1 1:1 7:1 17:1 21:1 24:1 34:1 66:1 92:3 95:1 97:1 98:1 99:1 100:1 101:4 108:1 110:1 114:1 115:1 117:1 118:1 121:1 123:1 124:1 126:1 130:1 134:1 160:1 170:1 199:1 208:1 214:1 275:1 286:1 348:1
0 1:1 7:1 17:1 21:1 24:1 34:1 66:1 92:3 95:1 97:1 98:1 99:1 100:1 101:4 108:1 110:1 114:1 115:1 117:1 118:1 121:1 123:1 124:1 126:1 130:1 134:1 160:1 170:1 199:1 208:1 214:1 275:1 286:1 348:1
0 1:1 7:1 17:1 21:1 24:1 39:1 41:1 90:1 91:1 92:3 96:1 97:1 98:1 99:1 101:3 102:1 108:1 110:1 113:1 115:1 118:1 121:1 123:1 124:1 126:1 127:1 130:1 134:1 138:1 146:1 148:1 160:1 172:1 199:1 200:1 205:1 208:2 218:1 268:1 269:1 286:1 348:1
0 1:1 7:1 17:1 24:1 33:1 41:1 69:1 92:3 95:1 99:1 100:1 101:2 102:1 108:1 110:1 113:1 115:1 119:1 121:1 122:1 123:1 127:1 136:1 137:1 138:1 141:1 146:1 150:1 157:1 160:1 170:1 207:1 208:1 211:1 232:1 263:1 286:1 348:1
Loading test...
has x = 1
has xt = 0
num_rows=248919 num_values=8824468 num_features=348 min_target=0 max_target=1
0 1:1 5:1 20:1 23:1 32:1 39:1 40:1 68:1 91:2 93:1 96:1 97:1 98:1 100:3 104:1 107:1 108:1 110:1 111:1 112:1 114:1 117:1 122:1 125:1 126:1 129:1 130:1 132:1 147:1 151:1 156:1 159:1 165:1 169:1 197:1 206:1 207:5 209:1 222:1 225:1 285:1 286:1
0 1:1 2:1 9:1 18:1 23:1 38:1 40:1 89:1 90:1 91:3 95:1 96:1 97:1 98:1 100:3 101:1 107:1 109:1 112:1 114:1 117:1 120:1 122:1 123:1 125:1 126:1 129:1 133:1 137:1 145:1 147:1 159:1 171:1 198:1 199:1 204:1 207:2 217:1 267:1 268:1 285:1 294:1
0 1:1 2:1 9:1 18:1 23:1 38:1 40:1 89:1 90:1 91:3 95:1 96:1 97:1 98:1 100:3 101:1 107:1 109:1 112:1 114:1 117:1 120:1 122:1 123:1 125:1 126:1 129:1 133:1 137:1 145:1 147:1 159:1 171:1 198:1 199:1 204:1 207:2 217:1 267:1 268:1 285:1 294:1
0 1:1 10:1 23:1 37:1 39:1 89:1 90:1 91:3 94:1 96:1 97:1 98:1 100:3 104:1 107:1 108:1 109:1 110:1 113:1 122:1 125:1 129:1 133:1 152:1 156:1 159:1 165:1 168:1 198:1 199:1 206:1 207:2 220:1 222:1 285:1 286:1
#relations: 0
Loading meta data...
#attr=349 #groups=1
#attr_in_group[0]=349
num_attributes=349
use w0=1
use w1=1
dim v =4
reg_w0=1
reg_w=0.01
reg_v=0.001
init ~ N(0,0.1)
num_iter=500
task=1
min_target=0
max_target=1
learnrate=0.1
learnrates=0.1,0.1,0.1
#iterations=500
SGD: DON'T FORGET TO SHUFFLE THE ROWS IN TRAINING DATA TO GET THE BEST RESULTS.
#Iter= 0 Train=0 Test=0
#Iter= 1 Train=0 Test=0
#Iter= 2 Train=0 Test=0
#Iter= 3 Train=0 Test=0
#Iter= 4 Train=0 Test=0
#Iter= 5 Train=0 Test=0
#Iter= 6 Train=0 Test=0
#Iter= 7 Train=0 Test=0
#Iter= 8 Train=0 Test=0
#Iter= 9 Train=0 Test=0
#Iter= 10 Train=0 Test=0
#Iter= 11 Train=0 Test=0
#Iter= 12 Train=0 Test=0
..
..
..
-----------------------------------------------------------------
After this, the same "Train = 0 Test = 0" thing goes on and on,
and when I check the results, the prediction values are all "nan".
What could be causing this problem?
Thank you
Kensuke Koshijima
ubuntu/libfm-1.42.src/bin$ ./libFM -task c -train trainX2.txt -test testX2.txt -dim '1,1,8' -iter 5 -method sgda -learn_rate 0.1 -init_stdev 1 -validation valX2.txt -out pred_file.txt
----------------------------------------------------------------------------
libFM
Version: 1.4.2
Author: Steffen Rendle, sre...@libfm.org
WWW: http://www.libfm.org/
This program comes with ABSOLUTELY NO WARRANTY; for details see license.txt.
This is free software, and you are welcome to redistribute it under certain
conditions; for details see license.txt.
----------------------------------------------------------------------------
Loading train...
has x = 1
has xt = 0
num_rows=60000 num_values=14771004 num_features=545 min_target=0 max_target=1
Loading test...
has x = 1
has xt = 0
num_rows=20000 num_values=4925899 num_features=545 min_target=0 max_target=1
Loading validation set...
has x = 1
has xt = 0
num_rows=20000 num_values=4922986 num_features=545 min_target=0 max_target=1
#relations: 0
Loading meta data...
learnrate=0.1
learnrates=0.1,0.1,0.1
#iterations=5
Training using self-adaptive-regularization SGD.
DON'T FORGET TO SHUFFLE THE ROWS IN TRAINING AND VALIDATION DATA TO GET THE BEST RESULTS.
Using 60000 rows for training model parameters and 20000 for training shrinkage.
#Iter= 0 Train=0 Test=0
#Iter= 1 Train=0 Test=0
#Iter= 2 Train=0 Test=0
#Iter= 3 Train=0 Test=0
#Iter= 4 Train=0 Test=0
Final Train=0 Test=0
ubuntu/libfm-1.42.src/bin$ cat pred_file.txt
nan
nan
nan
nan
nan
nan
nan
nan
nan
nan
nan
nan
nan
nan
nan
nan
nan
nan
nan
nan
nan
nan
nan
...