I am getting the above-mentioned error to convert a sem object into a semPlotModel object. Any Help?
mediation_results5 <- sem(mediation_model4, data = df2, verbose = TRUE)
> semPlot::semPlotModel(mediation_results5)
Error in dimnames(x) <- dn :
length of 'dimnames' [2] not equal to array extent
summary(mediation_results5)
lavaan 0.6-18 ended normally after 76 iterations
Estimator DWLS
Optimization method NLMINB
Number of model parameters 72
Number of observations 270288
Model Test User Model:
Standard Scaled
Test Statistic 1803.154 1875.300
Degrees of freedom 12 12
P-value (Chi-square) 0.000 0.000
Scaling correction factor 0.962
Shift parameter 0.871
simple second-order correction
Parameter Estimates:
Parameterization Delta
Standard errors Robust.sem
Information Expected
Information saturated (h1) model Unstructured
Regressions:
Estimate Std.Err z-value P(>|z|)
MVPA ~
BIP_PRS (a1) 0.008 0.002 3.171 0.002
Sex -0.033 0.005 -6.764 0.000
Age -0.019 0.000 -61.077 0.000
PC1 0.001 0.002 0.673 0.501
PC2 0.001 0.002 0.706 0.480
PC3 0.004 0.002 2.801 0.005
PC4 -0.003 0.001 -2.485 0.013
PC5 -0.001 0.001 -1.405 0.160
PC6 0.004 0.002 2.646 0.008
PC7 -0.003 0.001 -2.131 0.033
PC8 0.004 0.001 3.164 0.002
PC9 -0.000 0.001 -0.514 0.607
PC10 -0.002 0.001 -1.902 0.057
Screen ~
BIP_PRS (a2) -0.015 0.002 -8.008 0.000
Sex 0.241 0.004 63.938 0.000
Age 0.016 0.000 68.727 0.000
PC1 0.004 0.001 3.156 0.002
PC2 -0.002 0.001 -1.324 0.186
PC3 -0.002 0.001 -1.468 0.142
PC4 0.005 0.001 5.099 0.000
PC5 0.005 0.000 13.568 0.000
PC6 -0.003 0.001 -2.642 0.008
PC7 0.002 0.001 1.983 0.047
PC8 -0.001 0.001 -1.184 0.236
PC9 0.002 0.000 3.908 0.000
PC10 0.003 0.001 3.424 0.001
Healthy_Food ~
BIP_PRS (a3) -0.014 0.003 -5.378 0.000
Sex 0.282 0.005 55.600 0.000
Age -0.025 0.000 -77.724 0.000
PC1 -0.001 0.002 -0.694 0.488
PC2 -0.001 0.002 -0.329 0.742
PC3 -0.002 0.002 -0.999 0.318
PC4 0.003 0.001 2.376 0.017
PC5 0.004 0.001 7.550 0.000
PC6 -0.002 0.002 -1.048 0.294
PC7 0.000 0.001 0.219 0.827
PC8 -0.000 0.001 -0.067 0.947
PC9 0.003 0.001 5.326 0.000
PC10 -0.001 0.001 -0.775 0.438
Meat ~
BIP_PRS (a4) -0.014 0.003 -5.378 0.000
Sex 0.282 0.005 55.600 0.000
Age -0.025 0.000 -77.724 0.000
PC1 -0.001 0.002 -0.694 0.488
PC2 -0.001 0.002 -0.329 0.742
PC3 -0.002 0.002 -0.999 0.318
PC4 0.003 0.001 2.376 0.017
PC5 0.004 0.001 7.550 0.000
PC6 -0.002 0.002 -1.048 0.294
PC7 0.000 0.001 0.219 0.827
PC8 -0.000 0.001 -0.067 0.947
PC9 0.003 0.001 5.326 0.000
PC10 -0.001 0.001 -0.775 0.438
BMI ~
BIP_PRS (c) -0.047 0.009 -5.460 0.000
MVPA (b1) -0.633 0.011 -59.162 0.000
Screen (b2) 0.956 0.008 114.224 0.000
Helthy_Fd (b3) -0.036 0.006 -5.816 0.000
Meat (b4) -0.036 0.006 -5.816 0.000
Covariances:
Estimate Std.Err z-value P(>|z|)
.MVPA ~~
.Screen -0.102 0.002 -43.911 0.000
.Healthy_Food -0.201 0.003 -69.753 0.000
.Meat -0.201 0.003 -69.753 0.000
.Screen ~~
.Healthy_Food 0.085 0.002 37.476 0.000
.Meat 0.085 0.002 37.476 0.000
.Healthy_Food ~~
.Meat 0.000 0.001 0.030 0.976
Intercepts:
Estimate Std.Err z-value P(>|z|)
.Screen -0.800 0.020 -40.053 0.000
.Healthy_Food 1.260 0.027 46.027 0.000
.Meat 1.260 0.027 46.027 0.000
.BMI 26.150 0.092 285.225 0.000
Thresholds:
Estimate Std.Err z-value P(>|z|)
MVPA|t1 -1.040 0.026 -39.689 0.000
Variances:
Estimate Std.Err z-value P(>|z|)
.MVPA 1.000
.Screen 0.925 0.003 360.269 0.000
.Healthy_Food 1.728 0.002 715.677 0.000
.Meat 1.728 0.002 715.677 0.000
.BMI 19.379 0.043 450.468 0.000
Defined Parameters:
Estimate Std.Err z-value P(>|z|)
indirect1 -0.005 0.002 -3.167 0.002
indirect2 -0.014 0.002 -7.989 0.000
indirect3 0.000 0.000 3.947 0.000
indirect4 0.000 0.000 3.948 0.000
total -0.065 0.009 -7.385 0.000