This doesn't work for me for some reason. Not for CFA and not for SEM.
For CFA, suppose I run the following code:
data(HolzingerSwineford1939)
dat = HolzingerSwineford1939[,7:15]
model = 'visual =~ x1 + x2 + x3
        textual =~ x4 + x5 + x6
        speed =~ x7 + x8 + x9'
fit = cfa(model, data=dat)
summary(fit, standardized=T)
I get the following (truncated here): 
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  visual =~                                                             
    x1                1.000                               0.900    0.772
    x2                0.554    0.100    5.554    0.000    0.498    0.424
    x3                0.729    0.109    6.685    0.000    0.656    0.581
...
Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .x1                0.549    0.114    4.833    0.000    0.549    0.404
   .x2                1.134    0.102   11.146    0.000    1.134    0.821
   .x3                0.844    0.091    9.317    0.000    0.844    0.662
...
 visual            0.809    0.145    5.564    0.000    1.000    1.000
The Std.lv seems to be the original estimates x sd(latent).  E.g., for x2, 0.498=0.554*sqrt(0.809). (I would have thought it to be divided by, and not multiplied by, but ok). 
But the Std.all doesn't seem to be this divided by the sd(variable). E.g. for x2, 0.424 != 0.554*sqrt(0.809/1.134)...
For SEM it's the same. Std.lv are equal, but std.all are not. E.g.:
model <- '
  # measurement model (CFA)
    ind60 =~ x1 + x2 + x3
    dem60 =~ y1 + y2 + y3 + y4
    dem65 =~ y5 + y6 + y7 + y8
  # regressions / path analysis
    dem60 ~ ind60
    dem65 ~ ind60 + dem60
  # residual correlations
    y1 ~~ y5
    y2 ~~ y4 + y6
    y3 ~~ y7
    y4 ~~ y8
    y6 ~~ y8
'
fit = sem(model, data=PoliticalDemocracy)
summary(fit, standardized=TRUE)
Any help would be appreciated.