I create four latent variables from the 20 items of the CES-D (dep, pos, som, int) and a single higher-order factor (depression).
My syntax is :
model5.Morin <-
'dep=~CESD3 + CESD6 + CESD9 + CESD10 + CESD14 + CESD17 + CESD18
pos=~CESD4 + CESD8 + CESD12 + CESD16
som=~CESD1 + CESD2 + CESD5 + CESD7 + CESD11 + CESD13 + CESD20
int=~CESD15 + CESD19
dep~~u*dep
u>0
depression=~dep+pos+som+int'
fit <- cfa(model5.Morin, data = mydata, estimator = "WLSMV",
ordered=c("CESD1","CESD2","CESD3","CESD4","CESD5","CESD6","CESD7","CESD8","CESD9","CESD10","CESD11","CESD12","CESD13","CESD14",
"CESD15","CESD16","CESD17","CESD18","CESD19","CESD20"))
summary(fit, fit.measures=TRUE, standardized=TRUE)
I'm sorry but I can't have the data protected and I can't make it available. I hope you will have an idea anyway.