Dear Dr. Rosseel,
I have been running different factor analytical models using WLSMV estimator in small samples (150 < N < 200) and am obtaining better fit statistics (qui-square, CFI, and RMSEA) under the column called "Standard" (compared with the "Robust"). Because the discrepancies are relevant, I was wondering what set of fit indices I should interpret (standard or robust). Unfortunately, I did not find information about the specificities of interpreting them. Below is one example. Could you, please, give me some advice?
Model Test User Model:
Standard Robust
Test Statistic 10.697 31.305
Degrees of freedom 6 6
P-value (Chi-square) 0.098 0.000
Scaling correction factor 0.352
Shift parameter 0.880
simple second-order correction
Model Test Baseline Model:
Test statistic 3105.692 1663.657
Degrees of freedom 15 15
P-value 0.000 0.000
Scaling correction factor 1.875
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.998 0.985
Tucker-Lewis Index (TLI) 0.996 0.962
Robust Comparative Fit Index (CFI) NA
Robust Tucker-Lewis Index (TLI) NA
Root Mean Square Error of Approximation:
RMSEA 0.064 0.149
90 Percent confidence interval - lower 0.000 0.100
90 Percent confidence interval - upper 0.125 0.202
P-value RMSEA <= 0.05 0.300 0.001
--
Prof. Dr. Cristian Zanon
Programa de Pós-Graduação em Psicologia
Universidade Federal do Rio Grande do Sul